
Introduction
The structural disorder is inevitably present in many magnetic systems
which undergo a phase transition. Of particular interest is its impact near
the critical points, where even weak disorder can drastically modify the
scaling behavior. For instance, in magnetic systems weak quenched dis-
order can change the characteristics of the second order phase transition,
also it can modify the nature of this phase, producing spin-glass order.

Different types of structural randomness:

� random sites: magnetic phase transitions in crystalline alloys of uni-
axial magnets and their non-magnetic isomorphs;

� random fields: magnetically dilute crystals with applied uniform
fields;

� random anisotropy: amorphous alloys of rare-earth compounds with
aspherical electron distributions and transition metals.

In this work we analyse the critical properties of magnetic systems de-
scribed by the random-anisotropy model (RAM) [1].

Our goal here is a verification of an absence/presence of a long-range
ordered phase considering random anisotropy disorder with a generic
trimodal random axis distribution [2].

Random anisotropy
System of interacting m-component spins ~SR, located on sites of the d -
dimensional hypercubic lattice [1]:

H = −
∑
R,R′

JR,R′
~SR~SR′−D

∑
R

(x̂R~SR)2 (1)

where JR,R′ = J > 0 is a short-range ferro-
magnetic interaction between m-component
spins ~SR and ~SR′; x̂ is a random unit
vector indicating the direction of the local
anisotropy axis on each site; and D > 0 is
anisotropy strength.

D/J →∞ – majority of studies predicts spin-glass;

D/J ∼ 1 – the final answer is not received.

low temperature phase and transition to it?

� MF suggests a ferromagnetism, but studies involving fluctuations
yield different results;

� MC suggests spin glass and quasi-long-range ordering, but recent
research→ a ferromagnetic order.

Previous results
Isotropic distribution – the random vector x̂~R is directed in
any direction in m-dimensional hyperspace with equal proba-
bility:

pi(x̂) ≡
(∫

dmx̂

)−1

=
Γ(m/2)

2πm/2

Results: the continuous phase transition is absent.

Cubic distribution – the random vector x̂~R is allowed to be
directed along one of the 2m axes of the hypercubic lattice:

pc(x̂) =
1

2m

m∑
i=1

{
δ(m)(x̂ − k̂i) + δ(m)(x̂ + k̂i)

}
,

where k̂i , ... , k̂m are unit vectors along the axes.

Prediction: the continuous phase transition not found, but
solutions are reminiscent of the disordered Ising model.

� [3] – at the one-loop order of perturbation theory (RG);

� [4] – at the two-loop order of perturbation theory (RG);

� [5] – at the five-loop order of perturbation theory (RG).

Effective Hamiltonians

We map the spin lattice model (1) onto an effective ϕ4

theory using the Hubbard-Stratonovich transformation
and averaging over quenched disorder encoded by the lo-
cal random vectors {x̂~R} (all directions are fixed).

• “Pure” system
F = −1

β
lnZ

Z =
∑
{S}

e−βH → Z =

∫
d ~φe−βHeff

H = −
∑
R,R′

JR,R′
~SR~SR′ →

Heff = −
∫

dd R
{1

2

[
µ2

0|~φ|
2 + |~∇~φ|2

]
+

u0

4!
|~φ|4
}

• Disorder (we use the replica trick)

F = −1

β
lnZ = −1

β
lim

n→∞
Zn − 1

n

(the properties of the original system at n→ 0)

� isotropic distribution: pi(x̂) =
Γ(m/2)

2πm/2

Heff = −
∫

dd R
{1

2

[
µ2

0|~φ|
2 + |~∇~φ|2

]
+

u0

4!
|~φ|4 +

v0

4!

n∑
α=1

| ~φα|4

+
z0

4!

n∑
α,β=1

m∑
i ,j=1

φαi φ
α
j φ

β
i φ

β
j

}
, (2)

where u0 > 0, v0 > 0, z0 < 0, z0/u0 = −m;

� cubic distribution: pc(x̂) = 1
2m

∑m
i=1

{
δ(m)(x̂ − k̂i) + δ(m)(x̂ + k̂i)

}
Heff = −

∫
dd R

{1

2

[
µ2

0|~φ|
2 + |~∇~φ|2

]
+

u0

4!
|~φ|4 +

v0

4!

n∑
α=1

| ~φα|4

+
w0

4!

n∑
α,β=1

m∑
i=1

(φαi )2(φ
β
i )2 +

y0

4!

m∑
i=1

n∑
α=1

(φαi )4
}

, (3)

where u0 > 0, v0 > 0, w0 < 0, w0/u0 = −m, and ∀ y0.

� generic trimodal random axis distribution: p(x̂) = q pi(x̂) + (1− q) pc(x̂)
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∫
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]
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n∑
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(φαi )2(φ
β
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+
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n∑
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(φαi )4 +
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φαi φ
α
j φ

β
i φ

β
j

}
, (4)

where u0 > 0, v0 > 0, w0 < 0, z0 < 0, and ∀ y0 [6].

The effective model (4) can be also derived by considering:

� A more general local anisotropy axis distribution.

Moments of the distribution p(x̂): Mijkl =
∫

dN x̂ p(x̂) x̂ i x̂ j x̂k x̂ l .

If Mij =
δij
m , then the fourth moment is Mijkl = A(δijδkl + δikδjl + δilδjk) + Bδijδikδil ,

where parameters A and B , depend on the distribution p(x̂) and satisfy Cauchy in-
equalities A(m + 2) + B ≥ 1/m and 3A + B ≥ 1/m2 [5].

� Single-ion anisotropy with pi(x̂):

H = −
∑
R,R′

JR,R′
~SR~SR′−D

∑
R

(x̂R~SR)2 + V
∑
R

m∑
i=1

(Si
R)4,

where V is the cubic anisotropy strength(?) Some research with Hamiltonian (4) suggests the continuous phase transition ⇒ existence ferromagnetic order [7].

The field-theoretical RG aproach

δ

 L∑
i

pi +
N∑
j

kj

 Γ̊(L,N)({p}; {k};µ2
0; {λ̊}) =

∫ Λ0
dd R1 ... dd RLdd r1 ... dd rN

×e i(
∑

pi Ri +
∑

kj rj)
〈
φ2(R1) ...φ2(RL)φ(r1) · · ·φ(rN)

〉Heff

1PI
, (5)

where {λ̊} = {u0, v0, w0, y0, z0} are bare coupling constants, {p}, {k} are external momenta, Λ0 is a cut-off
parameter, and µ0 is a bare mass. Divergence in the limit Λ0 →∞

Renormalization: λ̊i = µε
Zλi

Z 2
φ

λi ,

where µ is the renormalized mass in the massive scheme and the scale parameter in the minimal subtrac-
tion scheme; Zλi

, Zφ and Zφ2 are the renormalization factors.

Then the renormalized vertex functions do not contain divergence: Γ
(L,N)
R = Z L

φ2Z
N/2
φ Γ̊(L,N)

� The RG functions: βλi
= −λi(ε + γλi

− 2γφ)

γλi
=
∂ ln Zλi

∂ lnµ

∣∣∣
{λ̊},µ0

, γφ =
∂ ln Zφ
∂ lnµ

∣∣∣
{λ̊},µ0

, γφ2 = −
∂ ln Zφ2

∂ lnµ

∣∣∣
{λ̊},µ0

, (6)

where ε = 4− d and Zφ2 = Zφ2Zφ. The β and γ functions characterize the change of the vertex functions
under the RG transformation, and thus allow one to calculate the scaling behavior in the critical region
controlled by a fixed point (FP)

βλi
({λ∗}) = 0, i = 1, 2, ... . (7)

The FP solution {λ∗} of (7) describes the critical point of the system if it is stable and accessible from the
initial conditions. The FP is stable if all the eigenvalues {ωi} of the stability matrix at this point have the
positive real parts: Bij = ∂βλi

/∂λi |λi =λ
∗
i
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Results
Applying renormalization schemes we obtain in the two-loop approximation the RG-functions

βλi
, γλi

, γφ, γφ2

� where we used the massive scheme;

� additionally we verified results in the minimal subtraction scheme;

� and also check that the RG functions satisfy the properties that follow from the original model (4) and
reproduce properly the results known for reduced models [5].

Next applying resummation procedure (Padé-Borel technique) for the analysis of the RG functions (at
the fixed d = 3) we obtain the sets of the FPs for m = 2 and m = 3 in the massive and
the minimal subtraction schemes, respectively.

� We have found that in the most general case of random anisotropy distribution
there is no stable FP accessible from physical initial conditions, and thus, there is
no continuous phase transition into a ferromagnetic state.

� However, the continuous phase transition can be observed for some particular distributions[4].

Conclusions

� We have considered the influence of complex distributions, which leads to an effective functional of φ4-
theory with five terms of different symmetry.

� Working within field-theoretical renormalization group (RG) theory we have calculated corresponding
two-loop RG functions in the massive scheme and the minimal subtraction scheme.

� We have verified that the RG functions reproduce the results known for the limiting cases of the isotropic
and cubic distributions.

� Resumming them with help of Padé-Borel technique we have solved FP equations and analyzed stability
of obtained solutions.

� Our results give no evidence of a FP which is simultaneously stable and accessible from the initial
conditions, therefore indicating absence of continuous phase transition into ferromagnetic state.
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