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Abstract

We investigate the phase-ordering kinetics of the d = 2 dimensional long-range Ising model with power-law decaying interactions ∝ 1/rd+σ. Recently, we have numerically confirmed that
the characteristic length `(t) after a quench to 0 < T < Tc grows as predicted by Bray and Rutenberg [1], i.e., for finite T the growth is σ dependent. We now perform a quench to T = 0,
for which we observe that the growth exponent α ≈ 3/4 is independent of σ and different from α = 1/2 as is known for the nearest-neighbor model. Additionally, we investigate the
persistence of the local order parameter and provide estimates for the persistence exponent θ and the fractal dimension df of the persistent lattice. In the limit of large σ only the fractal
dimension df of the nearest-neighbor Ising model is recovered, while θ differs significantly. This we understand from the unexpected value for α and a conjectured relation between these
exponents, which we confirm numerically for the long-range model.

Model and Phase Ordering Kinetics

The long-range Ising model with power-law decaying potential can be described by the
Hamiltonian

H = −1

2

∑
i

∑
j 6=i

J(rij)sisj and J(rij) =
1

rd+σij

where the spins si = ±1 are placed on a square lattice.
In phase ordering kinetics, starting from a disordered configuration, this system is then
quenched to 0 6= T < Tc and the ordering of the system is investigated. For this
model, there exists a prediction for the characteristic length during this process [1]:

`(t) ∝ tα =


t

1
1+σ σ < 1

(t ln t)1/2 σ = 1

t
1
2 σ > 1

For σ > 1 one thus sees short-range like be-
havior, for σ < 1 the growth becomes σ de-
pendent. We have shown this for the first
time numerically in Ref. [2]; see also Ref. [3].
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Zero Temperature

We now quench to T = 0 and do not observe the same growth law anymore [4, 5]:
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`(t) for different σ when
quenched to T = 0.

This appears puzzling on
first sight, but can qualita-
tively be understood from
d = 1, where for T = 0 bal-
listic growth independent of
σ is observed [6].
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Persistence Probability and Fractal Dimension

The persistence probability P (t)
of spins which have never flipped
often decays as a power law
P (t) ∼ t−θ with the nontrivial
exponent θ.

Here, this is also the case with a
clearly σ dependent exponent θ.

Fractal dimension measured from
the correlation function of the
persistent lattice D(r, t) as

D(r, t)/P (t) ∼

x−κ x � 1

1 x � 1

where κ = d−df with the fractal
dimension df .

Approaches the value of the nearest-neighbor model value of df ≈ 1.57 for σ → ∞.

To get an idea of the functional dependency of df(σ), we fitted a power law of the form
df(σ) = df,∞+Aσ−B to the data of df , where df,∞ = 1.555 is the estimate of df obtained
by assuming α = 3/4 and θ = 1/3, which is very close to the fitted value for σ = 8. The
corresponding fit is plotted above and has A = 0.1001(7) and B = 1.17(2).

There exists a proposed relationship reading d − df = θ/α [7], which is checked in the
plot of P (t) by taking the measured df and α = 3/4 and plugging them into this equation
to obtain θ. This is plotted as dashed magenta lines which fit exceptionally well.
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Conclusion

We have studied the zero-temperature coarsening of the two-dimensional long-range Ising model with non-conserved order parameter by tuning the degree of the long-range interactions via
the power-law exponent σ. It is found that the growth exponent α ≈ 3/4 is independent of σ. For our most short-range-like case of σ = 8, we find that the fractal dimension is compatible
with the value found for the nearest-neighbor Ising model and reads df ≈ 1.57. Evidence was provided in favor of the relation d− df = θ/α, which relates the nonequilibrium exponents.
We investigate a range of different σ and find that df (and thereby θ) varies continuously with σ. After completion of this work, we became aware of the very recent reference [5] where the
authors focus on the growth exponent α and also find `(t) ∼ t3/4 independent of σ.


