Phase-ordering kinetics and persistence of the two-dimensional long-range Ising model at zero temperature

<u>Henrik Christiansen</u>, Suman Majumder, and Wolfhard Janke Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany

Abstract

We investigate the phase-ordering kinetics of the d = 2 dimensional long-range Ising model with power-law decaying interactions $\propto 1/r^{d+\sigma}$. Recently, we have numerically confirmed that the characteristic length $\ell(t)$ after a quench to $0 < T < T_c$ grows as predicted by Bray and Rutenberg [1], i.e., for finite T the growth is σ dependent. We now perform a quench to T = 0, for which we observe that the growth exponent $\alpha \approx 3/4$ is independent of σ and different from $\alpha = 1/2$ as is known for the nearest-neighbor model. Additionally, we investigate the persistence of the local order parameter and provide estimates for the persistence exponent θ and the fractal dimension d_f of the nearest-neighbor Ising model is recovered, while θ differs significantly. This we understand from the unexpected value for α and a conjectured relation between these exponents, which we confirm numerically for the long-range model.

Model and Phase Ordering Kinetics

The long-range Ising model with power-law decaying potential can be described by the Hamiltonian

$$\mathcal{H} = -\frac{1}{2} \sum_{i} \sum_{j \neq i} J(r_{ij}) s_i s_j \text{ and } J(r_{ij}) = \frac{1}{r_{ij}^{d+\sigma}}$$

where the spins $s_i = \pm 1$ are placed on a square lattice.

In phase ordering kinetics, starting from a disordered configuration, this system is then quenched to $0 \neq T < T_c$ and the ordering of the system is investigated. For this model, there exists a prediction for the characteristic length during this process [1]:

$$\ell(t) \propto t^{\alpha} = \begin{cases} t^{\frac{1}{1+\sigma}} & \sigma < 1\\ (t\ln t)^{1/2} & \sigma = 1\\ t^{\frac{1}{2}} & \sigma > 1 \end{cases} \xrightarrow{1}$$

For $\sigma > 1$ one thus sees short-range like behavior, for $\sigma < 1$ the growth becomes σ dependent. We have shown this for the first time numerically in Ref. [2]; see also Ref. [3].

Persistence Probability and Fractal Dimension

Fractal dimension measured from the correlation function of the persistent lattice D(r,t) as $D(r,t)/P(t) \sim \begin{cases} x^{-\kappa} & x \ll 1\\ 1 & x \gg 1 \end{cases}$

where $\kappa = d - d_f$ with the fractal

The persistence probability P(t)of spins which have never flipped often decays as a power law $P(t) \sim t^{-\theta}$ with the nontrivial exponent θ .

Here, this is also the case with a clearly σ dependent exponent θ .

Zero Temperature

We now quench to T = 0 and do not observe the same growth law anymore [4, 5]:

 $\ell(t)$ for different σ when quenched to T = 0.

This appears puzzling on first sight, but can qualitatively be understood from d = 1, where for T = 0 ballistic growth independent of σ is observed [6].

 $t = 100 \qquad t = 200 \qquad t = 400$

Persistence: Interested in the spins which have never flipped until time t during the phase ordering protocol. Upper row: Direct lattice snapshots. Lower row: Persistent lattice snapshots. dimension d_f .

 σ

Approaches the value of the nearest-neighbor model value of $d_f \approx 1.57$ for $\sigma \to \infty$.

To get an idea of the functional dependency of $d_f(\sigma)$, we fitted a power law of the form $d_f(\sigma) = d_{f,\infty} + A\sigma^{-B}$ to the data of d_f , where $d_{f,\infty} = 1.55\overline{5}$ is the estimate of d_f obtained by assuming $\alpha = 3/4$ and $\theta = 1/3$, which is very close to the fitted value for $\sigma = 8$. The corresponding fit is plotted above and has A = 0.1001(7) and B = 1.17(2).

There exists a proposed relationship reading $d - d_f = \theta/\alpha$ [7], which is checked in the plot of P(t) by taking the measured d_f and $\alpha = 3/4$ and plugging them into this equation to obtain θ . This is plotted as dashed magenta lines which fit exceptionally well.

References

 A. J. Bray and A. D. Rutenberg, "Growth laws for phase ordering", Phys. Rev. E 49, R27 (1994).
H. Christiansen, S. Majumder, and W. Janke, "Phase ordering kinetics of the long-range Ising model", Phys. Rev. E 99, 011301(R) (2019).

[3] H. Christiansen, S. Majumder, M. Henkel, and W. Janke, "Aging in the long-range ising model", Phys. Rev. Lett. **125**, 180601 (2020).

[4] H. Christiansen, S. Majumder, and W. Janke, "Zero-temperature coarsening in the two-dimensional long-range Ising model", arXiv:2011.06098, to appear in Phys. Rev. E (2021).

[5] R. Agrawal, F. Corberi, E. Lippiello, P. Politi, and S. Puri, "Kinetics of the two-dimensional long-range Ising model at low temperatures", Phys. Rev. E **103**, 012108 (2021).

[6] F. Corberi, E. Lippiello, and P. Politi, "One dimensional phase-ordering in the Ising model with space decaying interactions", J. Stat. Phys. **176**, 512 (2019).

[7] G. Manoj and P. Ray, "Scaling and fractal formation in persistence", J. Phys. A **33**, L109 (2000).

Conclusion

We have studied the zero-temperature coarsening of the two-dimensional long-range Ising model with non-conserved order parameter by tuning the degree of the long-range interactions via the power-law exponent σ . It is found that the growth exponent $\alpha \approx 3/4$ is independent of σ . For our most short-range-like case of $\sigma = 8$, we find that the fractal dimension is compatible with the value found for the nearest-neighbor Ising model and reads $d_f \approx 1.57$. Evidence was provided in favor of the relation $d - d_f = \theta/\alpha$, which relates the nonequilibrium exponents. We investigate a range of different σ and find that d_f (and thereby θ) varies continuously with σ . After completion of this work, we became aware of the very recent reference [5] where the authors focus on the growth exponent α and also find $\ell(t) \sim t^{3/4}$ independent of σ .