

Phase transitions in low-velocity impact phenomena

Gergő Pál^{1,2†} & Ferenc Kun^{1,2} ¹University of Debrecen, ²Institute for Nuclear Research (ATOMKI)

Motivation

The instantaneous dynamic fragmentation of heterogeneous materials is abundant in nature (asteroid collision, volcanic eruption), and has many industrial applications as well [1]. **Repeated subcritical impacts** cause the shape evolution of river pebbles. Due to these abrasion and spallation processes, pebble shapes become smoother and rounder during the size reduction [2].

Model construction

We investigate the subcritical fragmentation of heterogeneous materials due to repeated impacts by mean of the Discrete Element Method (DEM) [3-8].

- Cubic samples with aspect ratio 1:1.2:1.4.
- Random homogeneous packing of elastic spheres
- Hertz-contact between overlapping spheres
- Cohesion is represented by elastic beams.
- Beams excert forces and torques.
- Broken beams form **cracks**
- Repeated impact against a hard wall

Top. Stone mine explosion emitting rocks. **Bottom**: shape of river pebbles.

Mass reduction in repeated impacts

Simulations revealed the existence of a new critical point v_c separating two qualitatively different behaviours:

Phase diagram of impact induced breakup

Depending on the collision energy, the **fragmentation** process has three **distinct phases** separated by two critical velocities v_c and v_f :

- Fragmentation: instantaneous breakup at high impact velocities. $v_0 > v_f$
- Cleavage: contact damage in complete single impact, destruction with repeated impacts.

 $m_r^a \to 0$ $v_c < v_0 < v_f,$ **Abrasion**: finite residual mass collisions, repeated In $m_r^a > 0$ $v_a < v_0 < v_c$,

Figure: The mass of the largest and second largest fragments as a function of impact velocity.

Abrasion is responsible for the shape evolution of rocks in nature e.g. the shape of pebbles in riverbeds and sea coasts.

Shape evolution in the abrasion phase

The **stages** of the evolution of the fragment shape:

- $N < N_R$: removal of corners and edges, intact face centers
- $N_R < N < N_S$: rounding and shrinking
- $N_{S} < N$: shrinking sphere

Scaling structure of shape evolution

With increasing impact velocity v_0 , a faster mass removal indicates an accelerated shape evolution. Rescaling with the γ power of impact velocity, the

curves of the side length ratios can be collapsed onto a master curve with good quality. The characteristic impact numbers N_R and N_S both can be described by a power law of the initial impact velocity.

$$N_R = A v_0^{-\gamma} \qquad \qquad N_S = B v_0^{-\gamma} \qquad \qquad \gamma = 3 \pm 0.07$$

Contact	References 1. J.A. Aström, Statistical models of brittle fragmentation, Advances in Physics 55, 3-4 (2006). 2. F. Kun, G. Pál, I. Varga, and I. G. Main, Effect of disorder on the spatial structure of damage in slowly compressed porous rocks, Philos. T. R. Soc. A 377, (2018).
Gergő Pál Department of Theoretical Physics, Faculty of Science and Technology, University of Debrecen Email: pal.gergo@science.unideb.hu	 T. Szabó, G. Domokos, J. P. Grotzinger, and D. J. Jerolmack, <i>Reconstructing the transport history of pebbles on Mars</i>, Nature Communications 6 Paper 8366. 7p. (2015). F. Kun, I. Varga, S. Lennartz-Sassinek, and I. G. Main, <i>Rupture Cascades in a Discrete Element Model of a Porous Sedimentary Rock</i>, Physical Review Letters 112, 065501 (2014). F. Kun, I. Varga, S. Lennartz-Sassinek, and I. G. Main, <i>Approach to failure in porous granular materials under compression</i>, Physical Review E 88, 062207 (2013). G. Pál, Z. Jánosi, F. Kun, and I. G. Main, <i>Fragmentation and shear band formation by slow compression of brittle porous media</i>, Physical Review E 94, 053003 (2016). G. Pál, and F. Kun, <i>Mass-velocity correlation in impact inducedfragmentation of heterogeneous solids</i>, Granular Matter 18, 74 (2016). G. Pál, F. Raischel, S. Lennartz-Sassinek, F. Kun, and I. G. Main, <i>Record-breaking events during the compressive failure of porous materials</i>, Physical Review E 93, 033006 (2016). G. Pál, I. Varga, and F. Kun, <i>Emergence of energy dependence in the fragmentation of heterogeneous materials</i>, Physical Review E 90, 062811 (2014).

The 46th Conference of the Middle European cooperation in Statistical Physics (MECO46)

May 11th-13th, 2021. Riga, Latvia (online)