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INTRODUCTION
In [1,2], we introduced a simple Curie-Weiss type model of a single-sort continuum particle

system in which space Rd is divided into congruent (cubic) cells. For a bounded region V ⊂ Rd

consisting of Nv such cells, the attraction between each two particles in V is set to be ga/Nv , re-
gardless of their positions. If such two particles lie in the same cell, they repel each other with
intensity gr > ga. Unlike [3], we deal with the grand canonical ensemble. We proved (see [1,2])
the possibility of a strict transition from a continuous system of interacting particles to such a cell
model and the exact calculation of its grand partition function. As a result, the existence of a cascade
of first-order phase transitions in the cell model with the Curie-Weiss interaction is strictly mathemat-
ically proved. Now we refer to the exact calculation of the equation of state of the model (see [1,2]
for details) and focus on important additions to the existing results of analytical calculation and
quantitative analysis of the phenomenon.

THE MODEL
The equation of state (EoS) is a good tool for studying the properties of any sys-

tem, e.g. obtained from the ratio
PV = kBT ln Ξ,

whereP is the pressure of a system, V is its total volume, kB is the Boltzmann constant,
T is the temperature, and Ξ is the grand partition function (GPF). In the case of a
continuous system of N interacting particles, the GPF has the form [4]
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here z = exp(βµ) is the activity, µ is the chemical potential, β = (kBT )−1 is the inverse
temperature, η = {x1, ..., xN}, xi are the coordinates of the i-th particle. If the system
volume conditionally divided into a finite number of congruent mutually disjoint cubic
cells ∆l = (−c/2, c/2]3 ⊂ R3, each of volume v = c3 = V/Nv , the potential energy is
written as [2] ∑

x,y∈η
ΨΛ(x, y) =
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here ρlη =
∑
x∈η I∆l

(x) is the occupation number of an l-th cell Here I∆l
is the

indicator of ∆l, that is, I∆l
(x) = 1 if x ∈ ∆l and I∆l

(x) = 0 otherwise.

THE POTENTIAL OF INTERACTION Ul1l2
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, x ∈ ∆l1 , y ∈ ∆l2 , l1 6= l2;

gr, x, y ∈ ∆l

gr > ga > 0 [1] is the condition of stability.

Optimization of thermodynamic variables: p = βga f = gr/ga

SOLUTION OF THE GPF
Asymptotic solution of the GPF in the case of Curie-Weiss interaction is

Ξ = exp (NvE0(z̄, µ)) ,

z = z̄ when E0(z, µ) = maxE0(z, µ),
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Km(z) are the special functions
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BEHAVIOR OF THE CHEMICAL POTENTIAL
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PARAMETERS OF THE CRITICAL POINT
Condition for the inflection points of
the function µ(z̄) at T = Tc is the solu-
tion of 

∂µ

∂z
= 0,

∂2µ

∂z2
= 0

Parameters of the inflection points for
first three (n) phase transitions in the
cascade (v = 1, f = 1.2)

(n) p
(n)
c z
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c n

(n)
c

1 3.9282 2.3983 0.5139
2 3.8185 7.5829 1.5056
3 3.7699 12.4174 2.5030

EXTREMA AND GLOBAL MAXIMA
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1. Extrema points of the
chemical potential

∂µ
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= 0

2. Global maxima points
of the chemical potential{
E0(z1)− E0(z2) = 0,
µ(z1)− µ(z2) = 0

PHASE DIAGRAMS
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CONCLUSIONS
• An accurate calculation shows that a one-component cell model with Curie-Weiss poten-

tial has a sequence of first order phase transitions at temperatures below the critical one.
Emergence of such a cascade is possibly associated with the point nature of particles. The
appearance of phases with higher and higher density in such a model is due to the lack of a
term in the potential of interaction that would prohibit the excess concentration of particles
in the cell.

• We derived conditions and relations for the values of the critical point parameters. We an-
alyzed the mechanism of phase transitions based on the behavior of the chemical potential
as a function of density.

• The obtained phase diagram confirms the absence of a triple point in such a system.
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