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e C Aggregates: we study the effect of the molecular architecture of am-
phiphilic star polymers on the shape of aggregates they form in water. Four
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Here x! is i-th Cartesian coordinate of n-th monomer: R, =
(x1, x2, ..., x9),nd Xy = Zf)’:lx,',/N, i = 1,...,d are the coordinates
of the center of mass for the polymer chain.

e Radius of gyration:
R: = TrQ. (2)

Figure 1: Asphericity A of the (f4 : fg) polymer star as a function of acg, the
solvophobicity of the C beads Here f4 is a number of solvophilic branches and
fg is a number of solvophopic branches . Factor acg discriminates between
good (acs = 25) and bad (acs = 40) solvent quality. Green line corresponds
to a homogeneous star with all branches of changing solubility (0 : 0).

e The maximum for the asphericity of homogenous-star is found near the 6-
point condition of the solvent. Physical explanation for this maximum is
based on the interplay between the free energy contributions.

Figure 5: Molecular architectures used in this study:(a) linear diblock copoly-
mers,(b) miktoarm star-polymer,(c) diblock 1 star-copolymer and (d) di-
block 2 star-copolymer. Where hydrophilic beads (type A) are shown in
blue,hydrophobic (type B) in yellow,central bead is shown in red
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e The asphericity of the polymer chain is defined as:

g(f) =

~2
B d TrQ
A_d—l(TrQ)z' (6)
e The level of "spherization™:
(Af)
f)= , 7
pA(f) ™ (7)

Simulation approach

In our study we follow the mesoscopic method of dissipative particle dynam-
ics (DPD) method.We follow the DPD approach as described in Ref. [5], the
length is represented in units of the diameter of soft bead, and the energy
scale is assumed to be €* = kgT = 1, where kg is Boltzmann constant, T
temperature, time is expressed in t* = 1. The monomers are connected via
harmonic springs, which results in the force:

/?',-JB = —kr;if;, (8)

The non-bonded forces contain three contributions:

C rC ., D, R

The expressions for all these three contributions are given below [5]

£C _ a(l — I’,'j)lf,:,', rij < 1,

F§ = {O, Tl (10)
F7 = —ywP(ry) (3 - Vij)#, (11)
FR = owR(ry)0;0t71/2%;. (12)

Where a is a repulsion coefficienta is the amplitude for the conservative re-
pulsive force. The dissipative force has an amplitude v and decays with the
distance according to the weight function WD(X,'J'). The amplitude for the

random force is o and the respective weight function is WR(XU). 0jj is the
Gaussian random variable.

Results

e A Star polymer, the role of solvent quality: we consider the star
shaped polymers with the number of arms f = 8. The length of one arm
is N = 8. We have studied two types of arms: f; arms with constant
solubility and £ arms with variable solubility [3].

Figure 2: Schematic illustration for the conformation of individual branches of

homogeneous star polymer (0 : 0) in various regimes. (a) good solvent, (b)
f-condition and (c¢) bad solvent.

e B Star polymer, the role of the density of arms: star polymer under-
goes a transformation from a group of loosely coupled chains at low number
of arms to a dense hairy colloid at their high number. We study the range
of size and shape properties of the star molecule and of its individual arms
upon this transformation [4].

Figure 3: Schematic presentation of single arm conformation in branched f-
arm polymer structure at polymeric (left) and colloidal (right) regimes.
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Figure 4. (a) Monte Carlo [6],(b) Gaussian, (c) Daoud-Cotton ansatz [7], (d)
Monte Carlo [8], (e¢) Monte Carlo [9], (f) Molecular dynamics [10], (g) Monte
Carlo [11].

e Asymptotic behavior of our results show good agreement with Monte Carlo
and molecular dynamics results, although the latter were obtained using sub-

stantially different potential. This demonstrates the universality of shape

properties
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Figure 7: Asphericity A of the (a) linear diblock copolymers,(b) miktoarm
star-polymer,(c) diblock 1 star-copolymer and (d) diblock 2 star-copolymer as
a function of aggregate numberMN,. Sharp transition from micellar shape to
vesicle shape at N; = 65 — 70.

e Four molecular architectures have been examined see Fig. 5. For all cases,
the same general sequence of shapes is found with an increase of the aggre-
gation number, namely: spherical micelle, aspherical micelle and a spherical
vesicle. The phase boundaries between these are found to depend on the
details of the molecular architecture. For the case (a)(c), the transforma-
tion between a spherical and aspherical micelle occurs gradually, whereas
the transition from an aspherical micelle into a spherical vesicle is in a form
of a sharp transition. In the case (b), aspherical micelle is less stable and
transition to a vesicle occurs at a lower aggregation number. The case (d)
is characterised by gradual transitions between all the shapes.
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