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Abstract

Population Annealing (PA) is a population-based algorithm that can be used for equilibrium simulation
of thermodynamic systems with a rough free energy landscape. It is known to be more efficient in doing
so than standard Markov chain Monte Carlo alone. The algorithm has a number of parameters that can
be fine-tuned to improve performance. While there is some theoretical and numerical work regarding
most of these parameters, there appears to be a gap in the literature concerning the role of resampling
in PA, which this work attempts to bridge.
The d = 2 Ising model is used as a benchmarking system for this study. At first various resampling
methods are implemented and numerically compared using a GPU PA implementation. In a second part
the exact solution of the Ising model is utilized to create an artificial PA setting with effectively infinite
Monte Carlo updates at each temperature as well as an infinite population. This allows one to look at
resampling in isolation from other parameters.
We identify when resampling choices affect the simulation outcome and obtain some results that are
model-independent. Further, we name two resampling methods that appear preferable over the widely
used multinomial resampling.

1. Population Annealing Algorithm [1]

Algorithm Standard Population Annealing algorithm [1]
1: t ← 0
2: Initialize population of R independent replicas at β0

3: while βt+1 < βmax do
4: t ← t + 1
5: Calculate Boltzmann weights wi of the replicas at βt
6: if t ≡ 0(mod M) then resample population according to weights

(on avg. τi = Rwi copies of replica i)
7: Monte Carlo update of the replicas (θ MC sweeps at βt)
8: Measure observables O
9: end while

Parameters
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# of MC updates at each
temperature step
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Figure: Schematic of a
typical PA simulation.
Vertical axis corresponds
to R replicas (here five)
and horizontal axis to
simulation time.

2. Resampling

RNG
“wanted” copies

τi ∈ (0,R)

Resampling ri ∈ N ∪ {0}

“actual” copies

The goal of resampling is to make a number of copies proportional to the statistical weight of individual
replicas. As this in general results in a non-integer number of “wanted” copies τi , this is not straight-
forwardly possible. Instead the actual (integer) number of copies, ri , is chosen through a random
resampling process such that the expectation of ri is τi , i.e. 〈ri〉 = τi .
Clearly, 〈ri〉 = τi does not fully specify the resampling process and a number of methods are possible:

With
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Pτi(ri = k) =
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3. Benchmarking Quantities

In order to answer the question which resampling method is best, we need measures of how well the
PA algorithm performs. These are the ones used in this work:

Bias and statistical error in observables

Family quantities ni (resp. Ni): fraction of the population (resp. # of replicas) descending from
replica i
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∑
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Figure: Pedigree of replicas:
Each color corresponds to a
family of replicas. The
number of surviving families
decreases with more and
more resampling steps and
the average family size
increases.

Sampling variance SV = 〈(r − τ )2〉

4. Simulation Work

The following data was obtained through PA simulations using the parameters R = 20,000, θ = 5 and
∆β = 1

200 and averaged over 5,000 runs (seeds). The implementation is based on the code of Ref. [2].

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 0.2 0.4 0.6 0.8 1

(a)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.2 0.4 0.6 0.8 1

(b)

0

50

100

0 0.2 0.4

4200

4400

4600

4800

0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.2 0.4 0.6 0.8 1

(c)

β

Cv stat. error normalized by the error
observed with nearest int resampling

β

average family size ρt

nearest integer systematic stratified residual Poisson multinomial
β

sampling variance SV

Figure: Measurements of benchmarking quantities as a function of β for various resampling methods. As a rough guide,
for all three quantities “The smaller the measurement value the better.”

resampling significantly affects simulation outcome

away from criticality artificial noise through resampling is of the order of (or larger than) the
weight variance (⇒ strong effect)

at criticality weight variance � sampling variance (⇒ very small effect)

5. Analytical Considerations

Under mild assumptions we can show that asymptotically the average family size is given by the
recursion relation

ρ
(k+1)
t = ρ

(k)
t + SV︸︷︷︸

→from resampling

+ σ2({τi})︸ ︷︷ ︸
→ model-dependent and

resampling-independent
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Figure: Increase in average family size per step size as a function of inverse temperature step size for different
temperatures and resampling methods.

family size growth at small (large) steps is governed by sampling variance (weight variance)

at large ∆β no resampling dependence

at small ∆β: ∆ρt ≈ SV and approaches method-specific SV0 ⇒ divergence if SV0 6= 0.

SV0 6= 0 for nearest int / sys. resampling ⇒ no divergence.
First order expansion of τ (∆β,E ′) shows that ∆ρt = SV = 〈|E − 〈E 〉|〉∆β as ∆β → 0.

Conclusion and Outlook

We have demonstrated that

resampling has a significant effect on the data obtained
through population annealing and see a difference in error
bars of up to 30% using standard resampling methods,
and

resampling matters mostly when the weight variance of
the replicas is of the order of or small compared to
sampling variance. Given a constant ∆β this is the case
away from criticality or analogously for a fixed β in the
case of small ∆β’s

Under most resampling schemes too frequent resampling
(“infinitesimal temperature steps”) is very
disadvantageous.

In a quest of finding the best resampling method nearest integer
resampling is a solid choice due to its easy implementation as
well as its stability against over-resampling. Systematic resam-
pling is also a good choice (in particular if a constant population
size is desired) as it provides the same stability although its im-
plementation is slightly more involved. Follow up questions will
include

adaptive annealing schedule that minimizes ρt
correlation effects that play a role for θ <∞ that where
neglected in the limit θ →∞
extending the notion of resampling cost as ∆ρt/∆β to
also include the number of MC sweeps
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