The Role of Resampling in Population Annealing
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Abstract 3. Benchmarking Quantities

Population Annealing (PA) IS a population—based algorithm that can be used for equilibrium simulation |n order to answer the question which resamp“ng method is best, we need measures of how well the
of thermodynamic systems with a rough free energy landscape. It is known to be more efficient in doing  PA algorithm performs. These are the ones used in this work:

so than standard Markov chain Monte Carlo alone. The algorithm has a number of parameters that can m Bias and statistical error in observables
be fine-tuned to improve performance. While there is some theoretical and numerical work regarding
most of these parameters, there appears to be a gap in the literature concerning the role of resampling
in PA, which this work attempts to bridge.

The d = 2 Ising model is used as a benchmarking system for this study. At first various resampling
methods are implemented and numerically compared using a GPU PA implementation. In a second part 0, = R Z n? = Z
the exact solution of the Ising model is utilized to create an artificial PA setting with effectively infinite R
Monte Carlo updates at each temperature as well as an infinite population. This allows one to look at more resampling steps and
resampling in isolation from other parameters. _ e EvERD ity e
We identify when resampling choices affect the simulation outcome and obtain some results that are 0 50 100 150 200 increases.
model-independent. Further, we name two resampling methods that appear preferable over the widely resampling steps

used multinomial resampling.

1. Population Annealing Algorithm [1 Parameters 4. Simulation Work

m Family quantities n; (resp. N;): fraction of the population (resp. # of replicas) descending from
replica i

Figure: Pedigree of replicas:
Each color corresponds to a
family of replicas. The

number of surviving families

decreases with more and
(average family S|ze)

m Sampling variance SV = ((r — 7)?)

m population size R The following data was obtained through PA simulations using the parameters R = 20,000, 6 = 5 and
. | | | m annealing schedule {3,} | A= -+ and averaged over 5,000 runs (seeds). The implementation is based on the code of Ref. [2].
Algorithm Standard Population Annealing algorithm [1]
e O m # of MC updates at each |
2: Initialize population of@ independent replicas at [ tempera-ture- step 14géssetf\/tede\r/\:|otrlwn:ergrfshtzue:t txsghrﬁpﬁg 5000 average family size p; 11 sampling variance SV
3: Wh"e{ﬁtﬂ < Pmax|do m resampling interval M ] (a) Q":',f}:.ﬂ?"-‘“f?{ 15001 (e
4. t<+—t+1 (usua”y : 1) 13 n W vu ]' 4000 0.9
5. Calculate Boltzmann weights w; of the replicas at f3; = resampling method , 2.5_ T | 3500 0.8
6: if t = 0(mod M) then resample population according to weights iz_ | 3000 82
(on avg 7; = Rw; copies of replica /) 15l , T.¥ | 2500 0|
7. Monte Carlo update of the replicas MC sweeps at () 1 K | 2000, 0.4
8. Measure observables O 1 65- | 1091 o | 0.3 o
o. end while | 1000 L S———
L 500 42000 g 7 01
el Gl wl) 0.9 O5—02 04 06 08 1 O 02 04 06 08 1

& p

A line line < " line . . . .
D 6 D
‘ ' ' ' ' > ' ' nearest integer — systematic stratified — residual Poisson —— multinomial ——
0-§-0-0-0- -@-
7
Vertical axis corresponds _
to R replicas (here five) m resampling significantly affects simulation outcome

QAQ_’Q_' AQ_’ and horizontal axis to m away from criticality artificial noise through resampling is of the order of (or larger than) the

simulation time.
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5t—1 By Bii1 5. Analytical Considerations

Figure: Measurements of benchmarking quantities as a function of 3 for various resampling methods. As a rough guide,

Figure: Schematic of a o ,
5 for all three quantities “The smaller the measurement value the better.

typical PA simulation.

t Under mild assumptions we can show that asymptotically the average family size is given by the
: recursion relation
2. Resampling k+D)  (K) oy i
Pt =Pt T+ 2 T+ o°({7i})
RN G “actual’ copies —from resampling model-dependent and

resampling-independent

“wanted” copies
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The goal of resampling is to make a number of copies proportional to the statistical weight of individual  Z )
replicas. As this in general results in a non-integer number of “wanted” copies 7;, this is not straight- =10
forwardly possible. Instead the actual (integer) number of copies, r;, is chosen through a random <103 ™
resampling process such that the expectation of r; is 7;, i.e. (r;) = 7. 102!
Clearly, (r;) = 7; does not fully specify the resampling process and a number of methods are possible: 10! |
With NearESt Integer PO'SSO“ 10 10—3 10—2 10—1 100 10 10—3 10—2 10—1 100 10 10—3 10—2 10—1 100 101
. i — | 7] k=|m] +1 Ap AP Ap
Fluctuating I I 7 | ckg=Ti | .. — 09 _ 0438 0.7 — 0.9 Poisson /
Population 'DTi(r" - k) =q1- (Ti - LT/J) K= LT"J 'DTi(ri — k) — Kl p=02— f=0438— p=0. p=09— multinomial
Size 0 else Figure: Increase in average family size per step size as a function of inverse temperature step size for different
temperatures and resampling methods.
Multinomial Stratified Systematic o ot I (large) steps i m ' _ (weight vari )
: m family size growth at small (large) steps is governe sampling variance (weight variance
Wlth Ug!./l Ug UlO U3 U2 Ul u2/3 U8 Ug UlO Ul U2U3 U8U9U10 y & . & P & y PING 5
Constant I T 0 I W O S A I T B m at large AS no resampling dependence
Population . m at small AS: Ap; = SV and approaches method-specific SV, = divergence if SV # 0.
Size Fe =10 fe =10 R =10 m SVj # 0 for nearest int / sys. resampling = no divergence.
First order expansion of 7(AS, E') shows that Ap; = SV = (|E — (E)|)AB as A — 0.

Conclusion and Outlook

We have demonstrated that E T, E [1] K. Hukushima and Y. Iba,
m resampling has a significant effect on the data obtained i Population annealing and its application to a spin glass,

through population annealing and see a difference in error in AIP Conference Proceedings, Vol. 690, p. 200, AlP,
bars of up to 30% using standard resampling methods, 2003

and

In a quest of finding the best resampling method nearest integer
resampling is a solid choice due to its easy implementation as
well as its stability against over-resampling. Systematic resam-
pling is also a good choice (in particular if a constant population
size is desired) as it provides the same stability although its im-
plementation is slightly more involved. Follow up questions will
include

m resampling matters mostly when the weight variance of
the replicas is of the order of or small compared to
sampling variance. Given a constant Af this is the case

away from criticality or analogously for a fixed (5 in the .
Y Y EOUSTY b m correlation effects that play a role for 8 < oo that where

case of small Aj3's . .
b | | neglected in the limit 0 — oo Acknowledgments
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