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Kardar-Parisi-Zhang model Renormalization group analysis

Canonical dimensions analysis shows that:

m New term suh/vo must be added in order for the problem (4) to
become renormalizable. There are 5 divergent Green’s functions.

m All the coupling constants gy = D/, wy = By/ >, u become
simultaneously dimensionless at d = 4 (it is a logarithmic
dimension), and ¢ = 4 — d, £ are the expansion parameters of the
perturbation theory.

m Renormalized action functional (Z; are renormalization constants) is:
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One-loop calculation

m Feynman diagrams technique was used to calculate the diverging
1-irreducible Green’s functions.

m All calculations were made in the leading order of (¢,£) expansion.
See [5] for example of similar calculations.

Figure 1: Stochastic growth of a flame front and a sand seabed Fixed points and and critical dimensions

m Kardar-Parisi-Zhang (KPZ) model is a well-known non-equilibrium
dynamics model that describes a wide range of phenomena: random
surface roughening, solidification and flame fronts, smoke and

m The long-time, large-scale asymptotic behaviour of the Green’s
functions is determined by the IR attractive fixed points. For field A:

colloid aggregates, tumors, etc. [1], [2]. KPZ model is a nonlinear (h(t,x) h(0,0)) = r >3 F (t/r2) (6)
differential equation for the field 2(z) = h(z,?) (profile height) that where F(...) is a scaling function, A, are critical dimensions.
depends on the d-dimensional coordinate z and time ¢: m RG analysis reveals that there are six fixed points (z = wu):
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Parameter s > 0; \j can be positive or negative, f is random noise. B =0,w =0,2"=—-8/3; A, =2,A,=0,A, =1—¢/2
m Let us put )\, = 1 (this can be achieved by rescaling of the Wy =g w =0,2"=8/3 A =2—e/h Ap =0, 8, =1 —2/8—¢/2
parameters). m They become attractive at certain values of the parameters (g, €):
A¢
m Let us choose f in the form
(f(2)f(2')) = Dbz — 2/ 2) FP5 PO e
This is “spatially quenched” (time-independent) noise; experimental
data [3] indicates that it better models landscape erosion than white FPA e
noise. Here D, is a positive amplitude. FP3
Velocity ensemble (2) FP1 Fpy &g/
m Turbulent motion of the environment is modelled by the
Kazantsev—Kraichnan ensemble [4] that has a distribution with zero
mean and the correlation function of the form Figure 2: Regions of stability of the fixed points in the model
(vi(t, z)v;(t', x")) = 0(t — t')Dyj(x — 2')
dk | 3 Conclusion (7)
Dij(r) = By / sapare La(R)e ) o . . .
ksm (27) m KPZ equation with spatially quenched noise advected by velocity
P;;(k) = 6;; — k;k;/k* is the transverse projector, it reflects the field modelled by Kazantsev-Kraichnan ensemble is
incompressibility of the fluid (9;v; = 0), k = |k| is the wave number, non-renormalizable theory; a new term h'vv must be added in order
By > 0 is a positive amplitude, 0 < £ < 2. The cutoff £ > m serves as to apply renormalization procedure (induced nonlinearity).

an infrared (IR) regularization.

m The advection by the velocity field is realised by "minimal”
replacement V;h = 0;h + (v;0;)h in Eq. (1).

m Coordinates of fixed points of RG equations were calculated in
one-loop approximation.

m The most realistic values of parameters (d=3, 2, 1, £=4/3 —
Field-theoretic reformulation Kolmogorov turbulence) correspond to the fixed point ¢* = —¢,
w* =0, 2% = —8/3.

m Stochastic problem (1) is equivalent to field theory with an increased
number of fields {h, h’, v;} and action functional S(®) = S;(P) + S,(P) EEDTTIeE

[6], where
= Kardar M, Parisi G and Zhang Y-C 1986 Phys. Rev. Lett. 56 889
2
Sp(P) = —h'Doh' + W {=Vih + 20°h + (WL) |3 - L Halpin-Healy T, Zhang Y-C 1995 Phys. Rep. 254 215
__t / dt / Jx / ax! Uz t X (X _x )v] (t < ) 2 A. Czirdk, E. Somfai, and J. Vicsek 1993 Phys. Rev. Lett. 71, 2154
= Falkovich G, Gaw edzki K and Vergassola M 2001 Rev. Mod. Phys. 73 913

m Here D, (x — x/) is the kernel of the inverse operator Digl for integral  ; Antonov N, Kakin P 2015 Theor. Math. Phys. 185(1) 37
operator from Eq. (3); integrations over (x, t) are implied in

) = Vasiliev, A. N. (2004) The Field Theoretic Renormalization Group in Critical behaviour
expression for Sy (P).
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