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Kardar-Parisi-Zhang model (1)

Figure 1: Stochastic growth of a flame front and a sand seabed

Kardar-Parisi-Zhang (KPZ) model is a well-known non-equilibrium
dynamics model that describes a wide range of phenomena: random
surface roughening, solidification and flame fronts, smoke and
colloid aggregates, tumors, etc. [1], [2]. KPZ model is a nonlinear
differential equation for the field h(x) = h(x, t) (profile height) that
depends on the d-dimensional coordinate x and time t:

∂th = κ0∂
2h +

λ0

2
(∂h)2 + f (1)

Here ∂t = ∂/∂t, ∂i = ∂/∂i, ∂2 = ∂i∂i, (∂h)2 = (∂ih)(∂ih), i = 1, ..., d.
Parameter κ0 > 0; λ0 can be positive or negative, f is random noise.
Let us put λ0 = 1 (this can be achieved by rescaling of the
parameters).

Let us choose f in the form

〈f (x)f (x′)〉 = D0δ
(d)(x− x′) (2)

This is “spatially quenched” (time-independent) noise; experimental
data [3] indicates that it better models landscape erosion than white
noise. HereD0 is a positive amplitude.

Velocity ensemble (2)

Turbulent motion of the environment is modelled by the
Kazantsev–Kraichnan ensemble [4] that has a distribution with zero
mean and the correlation function of the form

〈vi(t, x)vj(t
′, x′)〉 = δ(t− t′)Dij(x− x′)

Dij(r) = B0

∫
k>m

dk

(2π)dkd+ξ
Pij(k)eikqrq

(3)

Pij(k) = δij − kikj/k2 is the transverse projector, it reflects the
incompressibility of the fluid (∂ivi = 0), k = |k| is the wave number,
B0 > 0 is a positive amplitude, 0 < ξ < 2. The cutoff k > m serves as
an infrared (IR) regularization.
The advection by the velocity field is realised by "minimal"
replacement∇th = ∂th + (vi∂i)h in Eq. (1).

Field-theoretic reformulation (3)

Stochastic problem (1) is equivalent to field theory with an increased
number of fields {h, h′, vi} and action functional S(Φ) = Sh(Φ) + Sv(Φ)
[6], where

Sh(Φ) =
1

2
h′D0h

′ + h′{−∇th + κ0∂
2h +

1

2
(∂h)2},

Sv(Φ) = −1
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∫
dt

∫
dx

∫
dx′vi(t,x)D−1

ij (x− x′)vj(t,x
′).

(4)

HereD−1
ij (x− x′) is the kernel of the inverse operatorD−1

ij for integral
operator from Eq. (3); integrations over (x, t) are implied in
expression for Sh(Φ).
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Renormalization group analysis (4)

Canonical dimensions analysis shows that:
New term 1

2uh
′vv must be added in order for the problem (4) to

become renormalizable. There are 5 divergent Green’s functions.
All the coupling constants g0 = D0/κ4

0, w0 = B0/κ0, u become
simultaneously dimensionless at d = 4 (it is a logarithmic
dimension), and ε = 4− d, ξ are the expansion parameters of the
perturbation theory.
Renormalized action functional (Zi are renormalization constants) is:

SR(Φ) =
1

2
Z1h

′Dh′+ h′{−∂th−Z5vi∂ih+Z2κ∂2h+
1

2
Z3(∂h)2}+Sv +Z4
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(5)

One-loop calculation (5)

Feynman diagrams technique was used to calculate the diverging
1-irreducible Green’s functions.
All calculations were made in the leading order of (ε,ξ) expansion.
See [5] for example of similar calculations.

Fixed points and and critical dimensions (6)

The long-time, large-scale asymptotic behaviour of the Green’s
functions is determined by the IR attractive fixed points. For field h:

〈h(t,x)h(0,0)〉 ' r−2∆hF
(
t/r∆ω

)
, (6)

where F(. . . ) is a scaling function, ∆i are critical dimensions.
RG analysis reveals that there are six fixed points (x = wu):
g∗ = x∗ = w∗ = 0; ∆ω = 2, ∆h = 0, ∆v = 1− ξ/2
g∗ = −ε, w∗ = 0, x∗ = 0 ; ∆ω = 2− ε/4, ∆h = 0, ∆v = 1− ε/8− ξ/2
g∗ = −2(ε + 2ξ),w∗ = −4(ε + 4ξ)/3, x∗ = w∗; ∆ω = 2 + ξ, ∆h = 0, ∆v = 1− ξ
g∗ = −2(ε− 2ξ), w∗ = 4(4ξ − ε)/3, x∗ = 4(2ξ − ε)/3; ∆ω = 2− ξ, ∆h = 0, ∆v = 1− ξ
g∗ = 0, w∗ = 0, x∗ = −8ξ/3; ∆ω = 2, ∆h = 0, ∆v = 1− ξ/2
g∗ = −ε, w∗ = 0, x∗ = −8ξ/3; ∆ω = 2− ε/4, ∆h = 0, ∆v = 1− ε/8− ξ/2

They become attractive at certain values of the parameters (ε, ξ):

Figure 2: Regions of stability of the fixed points in the model

Conclusion (7)

KPZ equation with spatially quenched noise advected by velocity
field modelled by Kazantsev-Kraichnan ensemble is
non-renormalizable theory; a new term h′vv must be added in order
to apply renormalization procedure (induced nonlinearity).

Coordinates of fixed points of RG equations were calculated in
one-loop approximation.

The most realistic values of parameters (d=3, 2, 1, ξ=4/3 –
Kolmogorov turbulence) correspond to the fixed point g∗ = −ε,
w∗ = 0, x∗ = −8ξ/3.
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