Pressure effect on the ferroelectric ordering

Abstract

The effects, taking place under external pressure, are investigated
in the framework of the Blume—Emery-Griffiths (BEG) model corre-
sponding to the local potential with three minima. The deformable
BEG (d-BEG) model is proposed for this purpose; it is taken into con-
sideration that the influence of mechanical stress is realized through
the lattice strain resulting in restructuring of local atomic config-
urations. Based on this model, the pressure dependences of the
u = AV /V volume deformation are calculated on an example of
the SnyP,S¢ crystal. The presence of anomalies of u(p) function in
the regions of ferroelectric phase transitions of the first and second
order as well as the tricritical point is established; the behaviour of
the volume compressibility in these cases is investigated. Obtained
results are in agreement with the experimental data.

1. The BEG model, Sn,P,S; and pressure

Lattice models well describe the order-disorder phase transi-
tions in the crystals with locally anharmonic structure elements.
In the case of the three-well symmetrical potential an appropri-
ate one corresponds to the Blume-Emery-Griffiths (BEG) model
[Blume M., 1971]. The model can be applied to description of
crystals belonging to the SnyP,Sg family (with the possible par-
tial substitutions Sn = Pband S — Se, see [Vysochanskii Yu.M.,,
2006]) which are an example of such objects.
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Figure 1: Results of calculations within LDA for Sn,P>Sg [Rushchan-
skii K.Z., 2007]: (left) frozen-phonon energy surface (in eV) for a
linear combination of Ay and B, mode amplitudes (black circles
denote the projections of the positions of the global FE minima) and
(right) energy profile along the valley lines.

The performed ab initio calculations [Rushchanskii K.Z., 2007]
showed that ionic groups PS¢ exist in three configurations (de-
termined by their form and distribution of electronic charge),
which in the paraelectric phase are described by a symmetrical
three-well potential in the energy space. In the absence of ex-
ternal influence, the SnyP;,Sg crystal exhibits the second order
phase transition to the ferroelectric phase at T = 337 Kdue to a
dipole ordering of these groups [Yevych R.M., 2011].

The thermodynamics of the crystal is sensitive to the external
hydrostatic pressure and to the partial substitutions Sn = Pb
and S - Se. At the increase of pressure the temperature T, of
the second order phase transition decreases, a tricritical point is
achieved at T1cp = 220 Kand the ferroelectric state is suppressed
atp=p" =1.5GPa [Vysochanskii Yu.M., 2006]. This effect can be
explained by the influence of the pressure on the A parameter.

2. The model

Let us start from the Hamil-
tonian H of the lattice model
where three states [1), |2), and
13) (with respective energies
Eq, E> and E3) are possible for
each site. In the represen-
0 tation of Hubbard operators

. (Xl.aﬁ = |i, a){i, B|) one has
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Figure 2: A three-well |lo-
cal potential (states [1), |2),
and [3)) and a definition of

aa .
the energy parameter Eo. Operators X;"~ project on the

states |i, a) so their average
values (X9“) are equal to occupations of these states. Then,
the single-site part can be written down as

- h, 33 2 33,22

Hi= =X = Xi*) + Eo(X]~ + X[*) = ~hS? + Egnj,  (2)
where h is the field conjugated to the dipole moment, Eg =
E£0) —E = Ego) — Eq is the difference of energies of the side and

3 _ x22)

central configurations at h = 0, S,-Z = (X; /2 (related to

the local dipole moment) and n; = X?3 + X,-22 (that determines
an occupancy of side positions). It should be mentioned that for
every lattice site a condition ) _; Xfm = 1is fulfilled. The inter-
action part H' of the Hamiltonian of the model can be written in
general in the form

A 1 Z 7 1
H =—§ZJ,-1-S,-SJ-—§ZK,-jn,-nj. (3)
1] 1]

Deformation of the crystal lattice is an immediate reason of
variation of local potentials (i.e., Ep):

Al 33 22 N 2
q' = DZ(X,. + X Ju+ Sveou”, (4)
/
taking into account the renormalization due to deformation

Eo - Eg = Eg + Du (here u = AV/V is a relative change of the
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volume) as well as the energy of an elastic deformation (cg is
the volume elastic constant, v is the volume related to the one
formula unit, N is the number of relevant elements), while D is
the constant of an electron-deformational interaction.

An equilibrium value of the u parameter in the presence of
the H" interaction can be obtained starting from the condi-
tion of a thermodynamic equilibrium 0G/du = 0, where G is
the Gibbs free energy derived from the Helmholtz free energy
G = F — Nvuo, where o is a mechanical stress. Here F is a char-
acteristic function of (T, V, N) (in our case, of (T, u, N)) variables,
while the Gibbs free energy G is a function of (T, o, N). Since
0G/du = dF /ou — Nvo = (8H/du) — Nvo, a deformation u is
connected with the external mechanical stress as

cou+ (D)X + XY =0 (5)

(assuming an absence of a modulated ordering). Condition (5)
is an exact relation which can be considered as the generalized
Hooke's law: the role of the external stress o is not limited only
to the deformation of the lattice, the stress also affects the occu-
pations of the side positions (n = (X22 + X33)) of local wells.

The deformation u can be eliminated using equation (5). As a
result, the Hamiltonian of our model can be rewritten as

2
~ D 1 7 7 D _
H = E (EO+C_OG>ni_§ZJijSiSj_V_CO E nn,—+U, (6)
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The third term in expression (6) has a form corresponding to
the energy of a local quadrupole in the mean field Kq¢ n, where
the constant of the effective quadrupole interaction equals to

Koff = Dz/(vco). The role of the stress o is not limited to the ap-
pearance of the field (D/cg)o acting directly on quadrupoles. It
is also manifested in appearance of some additional terms in
expression (7). Equivalence to the BEG Hamiltonian is achieved
only in the absence of external stresses (at o = 0).

3. Thermodynamics in the MFA

The model described by the Hamiltonian

FI=XFI,-+FI'+FI", (8)
i

can be named as the deformed BEG model (d-BEG). At Kj; = 0
one can obtain in the mean field approximation (MFA)

N N 33

Hyg = 51172 + —vcou2 + Z [(H + I::o)X,.22 + (—H + Eg)X; ] . (9)
i
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Here H = Jn/2 (where J = Xj Jjj) is the effective field acting on

dipoles, n = (SI-Z) is the parameter of the dipole ordering that
determines the polarization of the system.

Starting from the single-site partition function, we obtain the
following expression for the Helmholtz free energy

N N —BE
FME = EJr,2 + Evcou2 ~NOIn|1+2¢PE cosh BH|, (10)

where 8 = 1/© = 1/kgT. Conditions of an extremum of the
function Gpg = Fme — Nvuo result in this case in the equations

- D 2e PFocosh BH
’ 0 N

V1 + 2e=BFo cosh BH

= e PEoginh BH

= - =0. (M)
1+ 2e BFo cosh BH

The second equation coincides with the earlier obtained relation
(5) between the deformation u and the mechanical stress o thus
being a generalization of the Hooke law.

4. Phase diagrams of the deformed BEG model

Starting from the data for SnyP;Sg [Vysochanskii Yu.M., 2006;

Bilanych R., 2014], we have fitted the following values of parame-

ters for the deformed BEG model (d-BEG): v = 0.23 - 10_24 cm3,

Co=5" 1011 erg/cm3, D =-11eV, cgv = 71.8 eV, Eg = —0.011 &V,
Verf = 0.017 eV. The parameter D was calculated using the def-
inition D = 9Ey/du based on the estimation of the derivative
0Ep/0p = —Ep/d0 =~ 0.011...0.025 eV/GPa according to the re-
sults of ab initio calculations [Yevych R., 2016] (herep = —0c is a
hydrostatic pressure). The value of the parameter J is chosen
from the condition of an optimal fit of the critical temperature
Tc at p = 0 comparing to its experimental value (T¢|exp = 337 K).
The value of Eg = —0.011 eV corresponds to the data presented
in [Yevych R., 2016] for a zero pressure.
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Figure 3: Dependence of the temperature of the ferroelectric-
paraelectric phase transition between the ferroelectric (F) and para-
electric (P) phases (left) on the energy parameter Eq (at p = 0) and
(right) on the applied pressure p (at Eg = —0.011eV)atJ = 0.14 eV,
cov =71.8eV, D = -1.1eV, V¢ = 0.017 eV.
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Atrise of Eg, the T, decreases, the order of the phase transition
changes at the tricritical point (Eg|tcp = 0.02 eV) and the ferro-
electric (F) phase is suppressed at Eg = 0.026 eV (figure 3). The
temperatures Tc(p = 0) and Tycp as well as the pressure p* (at
which the temperature of the phase transition tends to zero) are
relatively close to the experimental data (T¢|51c(p = 0) = 330 K,
Tcplcalc = 203Kand p™|calc = 1.7 GPawhile Te|exp(p = 0) = 337K,

TTCPlexp =220 K and P*lexp = 1.5 GPa).

The deformation Au jumps at the first order phase transition
accompanied by compression of the lattice (figure 4). As this
takes place, a relative change of the volume AV /V attains to val-
ues —0.011 corresponding to the measured change of the unit cell
volume for the SnyP,Sq crystal (according to [Vysochanskii Yu.M.,

2006], Vg = 0.457 - 10~%* cm? for the ferrophase (T = 293 K) and
Veell = 0.452 - 10~%* cm?’ for the paraphase (T = 358 K)).
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Figure 4: The calculated dependences of the deformation parame-
ter u on the pressure p atvarious temperatures (174K, 203K and 232K,
respectively); hereandin figures 5,6 and7: J = 0.14 eV, cov = 71.8 ¢V,
D =-11eV, Eg = —0.011eV, V¢ = 0.017 eV.
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Figure 5: The dependences of the “polarization” n on the pressure
p at various temperatures (174 K, 203 K and 232 K, respectively).
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In the tricritical point, the function x(p) diverges while nearby
this point it demonstrates a peak-like behaviour. Variation of
the compressibility within the peak region is of the order of 0.02-

0.04 GPa_1 (close to the measured values [Slivka A.G., 1999]).

0.08

)

0.08 . 0.08

0.06-

] |
0.04-

ll@=00175ev

0.06- 0.06 -

0.04

Compressibility -au/ap (GPa™")

Compressibility —au/ap (GP:
o
o
D

Compressibility —au/ap (GPa

| ©=0.02eV
0.02 1 R R
0.0 0.5 10 15 20 0.0 0.5 1.0 15 2.0 0.0 0.5 10 15 2.0
Pressure p (GPa) Pressure p (GPa) Pressure p (GPa)

Figure 6: The dependences of the compressibility x on the pressure
p at various temperatures (174 K, 203 K and 232 K, respectively).

We can also con-
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sition in the free crys-
tal corresponds to a
respective interval
of u values located
between the para-
phase and ferrophase in the case of the clamped crystals (fig-
ure 7). Binodals, depicted by dashed lines, were obtained by
comparing the Gibbs free energy of both phases and using the
deformation jump data along the first order phase transition
line in the (u, p) plane. For all values of u and T from the inter-
mediate region (located between areas of the P and F phases)
a separation into differently strained fragments of the P and F
phases occurs according to the rule xp = (u — ug)/(up — ug) and
xg = (up — u)(up — up), where xpr are the relative fractions of
the P (F) phase, upf are the values of the deformation u on the
respective boundary of the mentioned interval.

Deformation u
Figure 7: The phase diagram (T, u)
for the case of the mechanically
clamped crystal (regime u = const).

5. Conclusions

In the framework of the d-BEG model, the interaction of en-
ergy states of the mentioned structure elements (e.g., groups
P,Sg for the SnyP,Sg crystal) with the lattice deformation leads
to the anomaly of the u(p) dependence in the vicinity of the
phase transitions from the ferroelectric (F) to paraelectric (P)
phase. The lattice compresses and the deformation has a jump
Au at the first order phase transition and changes continuously
at the second order one. A peak-like behaviour of the du/dp
function in the vicinity of the phase transition is also revealed.
This peak increases approaching the tricritical point where the
compressibility y = —du/dp diverges. Such behaviour of u(p)
and x(p) coincides with the observed one.

Thermodynamics of SnyP5Sg is also considered in the case of a
clamped crystal (regime u = const). As is shown, at T < Tycp the
region of deformation values is present in this regime, where the
crystal exists in a mixed state being separated into differently
strained fragments of the P and F phases. This mixed phase is
located between the ““pure”’ P and F phases on the (T, u) phase
diagram. Such a state of the phase coexistence can be experi-
mentally identified by measurement of the compressibility y(u)
in the “‘clamped’’ regime in the area of the mixed state (here
x(u) is a linear function on u in the interval [up, Uf]).



