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Abstract

The e�ects, takingplaceunder external pressure, are investigated
in the framework of the Blume–Emery–Gri�ths (BEG)model corre-
sponding to the local potential with threeminima. The deformable
BEG (d-BEG) model is proposed for this purpose; it is taken into con-
sideration that the in�uenceofmechanical stress is realized through
the lattice strain resulting in restructuring of local atomic con�g-
urations. Based on this model, the pressure dependences of the
u = ∆V/V volume deformation are calculated on an example of
the Sn2P2S6 crystal. The presence of anomalies of u(p) function in
the regions of ferroelectric phase transitions of the �rst and second
order as well as the tricritical point is established; the behaviour of
the volume compressibility in these cases is investigated. Obtained
results are in agreement with the experimental data.

1.|e BEGmodel, Sn2P2S6 and pressure

Lattice models well describe the order-disorder phase transi-
tions in the crystals with locally anharmonic structure elements.
In the case of the three-well symmetrical potential an appropri-
ate one corresponds to the Blume–Emery–Gri�ths (BEG) model
[Blume M., 1971]. The model can be applied to description of
crystals belonging to the Sn2P2S6 family (with the possible par-
tial substitutions Sn → Pb and S → Se, see [Vysochanskii Yu.M.,
2006]) which are an example of such objects.

In BaTiO3 and other perovskites the subspace of the
important degrees of freedom for the anharmonic part of
the Hamiltonian is determined by just the eigenvector of
the soft mode, which has imaginary frequency in harmonic
ab initio phonon calculations. In contrast, we have found
that in the case of SPS the phonon spectrum of the high-
symmetry phase is dynamically stable over the entire range
of the Brillouin zone. Compatible with the PT group-
subgroup relation are two mode types: polar Bu and non-
polar fully symmetrical Ag. Using the resulting relaxed
geometry of the PE and the FE phases and the zone-center
normal-mode displacements in the PE phase we can de-
compose the reference PE structure distortions in terms of
the Ag and Bu optical-mode amplitudes. It turned out that
the Bu (39 cm�1) and Ag (41 cm�1) modes with the lowest
energy make the largest contributions to the FE lattice
distortions, but the contributions of the other modes with
a higher energy cannot be neglected as well. The eigen-
vector of the low-energy optical Bu mode describes in-
phase displacements of the four Sn2� cations mostly along
the a-axis and the corresponding counter-phase displace-
ments of the two anion complexes. In the low-energy Ag
vibration only the out-of-phase displacements in the cation
sublattice are observed. These findings are very similar to
the recent semiempirical results [22].

Frozen-phonon calculations of the total energy for the
low-energy Bu mode does not point at any additional
minima, which might be related to the FE instability. But
surveying the potential-energy surface in the subspace of
low-energy Bu and Ag modes the strong deviation from
harmonic behavior can be clearly seen, though the global
FE minima still are not observed (see Fig. 1). The energy
positions of the FE global minima can be reached only in
the subspace of all 15Ag � 13Bu normal coordinates and
four monoclinic components of strain, the order parameter
is determined as a valley line in the 32-dimensional phase
space. Using the approach proposed in [23], we evaluate
the total energy as a function of an amplitude u � �u2

x �

u2
y � u2

z�
1=2 of the FE atomic displacements u� �

�
P
n�r

n�p�
� � rn�PE�� �2�1=2 in the PE unit cell, where rn�PE�

and rn�p� are the position of atom n in the PE and polar
structures, respectively. For each u we have performed the
simulations of (i) the direct-path, obtained with no struc-
tural relaxations connecting PE and FE configurations,
(ii) the internal relaxation path, when the internal degrees
of freedom were allowed to relax, while the lattice shape
was fixed to the reference PE structure, and (iii) the real
path, when all possible degrees of freedom were allowed to
relax during energy minimization procedure. For the first
two simulations the homogeneous strain induced by inter-
nal deformation was relaxed using linear stress-strain rela-
tion with calculated clamped-ion elastic moduli, and the
related elastic energy was extracted from the correspond-
ing path. The results are collected in Fig. 2.

The obtained energy profile has a triple-well shape,
where two FE valleys arise from the nonequivalent lattice
distortions Ag	 Bu as a result of strong nonlinear AgB2

u

interaction. The PE valley is the main source of the ex-
perimentally observed [11,13,14] relaxation part of the
order-parameter fluctuation spectrum. Relaxation pro-
cesses, observed as the coexistence of the FE and PE
NMR-resonances within a 16 K temperature range below
the PT [7], also confirm the obtained triple-well shape of
the potential-energy surface.

In the vicinity of the PE reference structure a difference
between the real path and the elastically relaxed counter-
parts for the direct path and the internal relaxation path is
considerably large (see Fig. 2), which indicates a signifi-
cant nonlinear coupling between the order parameter and
the strain. The internal relaxation path coincides well with
the real path only in the middle of the valley line, while its
elastically relaxed counterpart does not reach the global FE
minima in the FE valley. Within the whole of the FE valley
the real path coincides with the elastically relaxed counter-
part of the direct path. Therefore, as a local polar distortion
we have chosen the set of the linear atomic displacements

FIG. 1 (color online). Frozen-phonon energy surface (in eV)
for a linear combination of Ag and Bu mode amplitudes for
Sn2P2S6 within LDA. Black circles denote the projections of the
positions of the global FE minima.
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FIG. 2 (color online). Energy profile along the valley lines in
Sn2P2S6 within LDA.
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Figure 1: Results of calculations within LDA for Sn2P2S6 [Rushchan-
skii K.Z., 2007]: (left) frozen-phonon energy surface (in eV) for a
linear combination of Ag and Bu mode amplitudes (black circles
denote the projections of the positions of the global FEminima) and
(right) energy pro�le along the valley lines.

The performed ab initio calculations [Rushchanskii K.Z., 2007]
showed that ionic groups P2S6 exist in three con�gurations (de-
termined by their form and distribution of electronic charge),
which in the paraelectric phase are described by a symmetrical
three-well potential in the energy space. In the absence of ex-
ternal in�uence, the Sn2P2S6 crystal exhibits the second order
phase transition to the ferroelectric phase at Tc = 337 K due to a
dipole ordering of these groups [Yevych R.M., 2011].

The thermodynamics of the crystal is sensitive to the external
hydrostatic pressure and to the partial substitutions Sn → Pb
and S → Se. At the increase of pressure the temperature Tc of
the second order phase transition decreases, a tricritical point is
achieved at TTCP = 220 K and the ferroelectric state is suppressed
at p = p∗ = 1.5 GPa [Vysochanskii Yu.M., 2006]. This e�ect can be
explained by the in�uence of the pressure on the ∆ parameter.

2.|emodel
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Figure 2: A three-well lo-
cal potential (states ∣1⟩, ∣2⟩,
and ∣3⟩) and a de�nition of
the energy parameter E0.

Let us start from the Hamil-
tonian Ĥ of the lattice model
where three states ∣1⟩, ∣2⟩, and
∣3⟩ (with respective energies
E1, E2 and E3) are possible for
each site. In the represen-
tation of Hubbard operators
(Xαβi = ∣i , α⟩⟨i , β∣) one has

Ĥ = ∑
i

3
∑
α=1

EαX
αα
i + Ĥ′. (1)

Operators Xααi project on the
states ∣i , α⟩ so their average

values ⟨Xαα⟩ are equal to occupations of these states. Then,
the single-site part can be written down as

Ĥi = −
h
2
(X33

i − X22
i ) + E0(X33

i + X22
i ) ≡ −hSzi + E0ni , (2)

where h is the �eld conjugated to the dipole moment, E0 =

E(0)
2 − E1 = E(0)

3 − E1 is the di�erence of energies of the side and

central con�gurations at h = 0, Szi = (X33
i − X22

i )/2 (related to
the local dipole moment) and ni = X33

i + X22
i (that determines

an occupancy of side positions). It should be mentioned that for
every lattice site a condition∑α=1 X

αα
i = 1 is ful�lled. The inter-

action part Ĥ′ of the Hamiltonian of the model can be written in
general in the form

Ĥ′ = −
1
2
∑
i j
Ji jS

z
i Szj −

1
2
∑
i j
Ki jnin j. (3)

Deformation of the crystal lattice is an immediate reason of
variation of local potentials (i.e., E0):

Ĥ′′ = D∑
i
(X33

i + X22
i )u + N

2
vc0u2, (4)

taking into account the renormalization due to deformation
E0 → Ẽ0 = E0 + Du (here u = ∆V/V is a relative change of the

volume) as well as the energy of an elastic deformation (c0 is
the volume elastic constant, v is the volume related to the one
formula unit, N is the number of relevant elements), while D is
the constant of an electron-deformational interaction.
An equilibrium value of the u parameter in the presence of

the Ĥ′′ interaction can be obtained starting from the condi-
tion of a thermodynamic equilibrium ∂G/∂u = 0, where G is
the Gibbs free energy derived from the Helmholtz free energy
G = F − Nvuσ , where σ is a mechanical stress. Here F is a char-
acteristic function of (T , V , N) (in our case, of (T , u, N)) variables,
while the Gibbs free energy G is a function of (T , σ , N). Since
∂G/∂u = ∂F/∂u − Nvσ = ⟨∂Ĥ/∂u⟩ − Nvσ , a deformation u is
connected with the external mechanical stress as

c0u + (D/v)⟨X33
i + X22

i ⟩ = σ (5)

(assuming an absence of a modulated ordering). Condition (5)
is an exact relation which can be considered as the generalized
Hooke’s law: the role of the external stress σ is not limited only
to the deformation of the lattice, the stress also a�ects the occu-
pations of the side positions (n̄ = ⟨X22 + X33⟩) of local wells.

The deformation u can be eliminated using equation (5). As a
result, the Hamiltonian of our model can be rewritten as

Ĥ = ∑
i

(E0 +
D
c0

σ) ni −
1
2
∑
i j
Ji jS

z
i Szj −

D2

vc0
∑
i
n̄ni + U, (6)

U =
N

2c0
vσ2

−
ND
c0

σn̄ +
N
2
D2

vc0
n̄2. (7)

The third term in expression (6) has a form corresponding to
the energy of a local quadrupole in the mean �eld Ke� n̄, where
the constant of the e�ective quadrupole interaction equals to
Ke� = D2/(vc0). The role of the stress σ is not limited to the ap-
pearance of the �eld (D/c0)σ acting directly on quadrupoles. It
is also manifested in appearance of some additional terms in
expression (7). Equivalence to the BEG Hamiltonian is achieved
only in the absence of external stresses (at σ = 0).

3.|ermodynamics in theMFA

The model described by the Hamiltonian

Ĥ = ∑
i
Ĥi + Ĥ′ + Ĥ′′, (8)

can be named as the deformed BEG model (d-BEG). At Ki j = 0
one can obtain in the mean �eld approximation (MFA)

ĤMF =
N
2
Jη2

+
N
2
vc0u2

+∑
i

[(H + Ẽ0)X22
i + (−H + Ẽ0)X33

i ] . (9)

Here H = Jη/2 (where J = ∑ j Ji j) is the e�ective �eld acting on
dipoles, η = ⟨Szi ⟩ is the parameter of the dipole ordering that
determines the polarization of the system.

Starting from the single-site partition function, we obtain the
following expression for the Helmholtz free energy

FMF =
N
2
Jη2

+
N
2
vc0u2

− NΘ ln (1 + 2e−βẼ0 cosh βH) , (10)

where β = 1/Θ = 1/kBT . Conditions of an extremum of the
function GMF = FMF − Nvuσ result in this case in the equations

η =
e−βẼ0 sinh βH

1 + 2e−βẼ0 cosh βH
, c0u+

D
v

2e−βẼ0 cosh βH

1 + 2e−βẼ0 cosh βH
= σ . (11)

The second equation coincides with the earlier obtained relation
(5) between the deformation u and the mechanical stress σ thus
being a generalization of the Hooke law.

4. Phase diagrams of the deformed BEGmodel

Starting from the data for Sn2P2S6 [Vysochanskii Yu.M., 2006;
Bilanych R., 2014], we have �tted the following values of parame-
ters for the deformed BEG model (d-BEG): v = 0.23 ⋅ 10−24 cm3,
c0 = 5 ⋅ 1011 erg/cm3, D = −1.1 eV, c0v = 71.8 eV, E0 = −0.011 eV,
Ve� = 0.017 eV. The parameter D was calculated using the def-
inition D = ∂Ẽ0/∂u based on the estimation of the derivative
∂Ẽ0/∂p = −Ẽ0/∂σ ≈ 0.011 . . . 0.025 eV/GPa according to the re-
sults of ab initio calculations [Yevych R., 2016] (here p = −σ is a
hydrostatic pressure). The value of the parameter J is chosen
from the condition of an optimal �t of the critical temperature
Tc at p = 0 comparing to its experimental value (Tc∣exp = 337 K).
The value of E0 = −0.011 eV corresponds to the data presented
in [Yevych R., 2016] for a zero pressure.
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Figure 3: Dependence of the temperature of the ferroelectric-
paraelectric phase transition between the ferroelectric (F) and para-
electric (P) phases (left) on the energy parameter E0 (at p = 0) and
(right) on the applied pressure p (at E0 = −0.011 eV) at J = 0.14 eV,
c0v = 71.8 eV, D = −1.1 eV, Ve� = 0.017 eV.

At rise of E0, the Tc decreases, the order of the phase transition
changes at the tricritical point (E0∣TCP ≈ 0.02 eV) and the ferro-
electric (F) phase is suppressed at E0 ⩾ 0.026 eV (�gure 3). The
temperatures Tc(p = 0) and TTCP as well as the pressure p∗ (at
which the temperature of the phase transition tends to zero) are
relatively close to the experimental data (Tc∣calc(p = 0) = 330 K,
TTCP∣calc = 203 K and p∗∣calc = 1.7 GPawhile Tc∣exp(p = 0) = 337 K,
TTCP∣exp = 220 K and p∗∣exp = 1.5 GPa).

The deformation ∆u jumps at the �rst order phase transition
accompanied by compression of the lattice (�gure 4). As this
takes place, a relative change of the volume ∆V/V attains to val-
ues−0.011 corresponding to themeasured changeof the unit cell
volume for the Sn2P2S6 crystal (according to [Vysochanskii Yu.M.,
2006], vcell ≈ 0.457 ⋅ 10−24 cm3 for the ferrophase (T = 293 K) and
vcell ≈ 0.452 ⋅ 10−24 cm3 for the paraphase (T = 358 K)).
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Figure 4: The calculated dependences of the deformation parame-
ter u on thepressurepatvarious temperatures (174K, 203Kand232K,
respectively); here and in �gures 5, 6 and 7: J = 0.14 eV, c0v = 71.8 eV,
D = −1.1 eV, E0 = −0.011 eV, Ve� = 0.017 eV.
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Figure 5: The dependences of the ‘‘polarization’’ η on the pressure
p at various temperatures (174 K, 203 K and 232 K, respectively).

In the tricritical point, the function χ(p) diverges while nearby
this point it demonstrates a peak-like behaviour. Variation of
the compressibility within the peak region is of the order of 0.02–
0.04 GPa−1 (close to the measured values [Slivka A.G., 1999]).
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Figure 6: The dependences of the compressibility χ on the pressure
p at various temperatures (174 K, 203 K and 232 K, respectively).
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Figure 7: The phase diagram (T , u)
for the case of the mechanically
clamped crystal (regime u = const).

We can also con-
sider the case of
the mechanically
clamped crystal
(regime u = const).
The jump of u at the
�rst order phase tran-
sition in the free crys-
tal corresponds to a
respective interval
of u values located
between the para-

phase and ferrophase in the case of the clamped crystals (�g-
ure 7). Binodals, depicted by dashed lines, were obtained by
comparing the Gibbs free energy of both phases and using the
deformation jump data along the �rst order phase transition
line in the (u, p) plane. For all values of u and T from the inter-
mediate region (located between areas of the P and F phases)
a separation into di�erently strained fragments of the P and F
phases occurs according to the rule xP = (u − uF)/(uP − uF) and
xF = (uP − u)(uP − uF), where xP,F are the relative fractions of
the P (F) phase, uP,F are the values of the deformation u on the
respective boundary of the mentioned interval.

5. Conclusions

In the framework of the d-BEG model, the interaction of en-
ergy states of the mentioned structure elements (e.g., groups
P2S6 for the Sn2P2S6 crystal) with the lattice deformation leads
to the anomaly of the u(p) dependence in the vicinity of the
phase transitions from the ferroelectric (F) to paraelectric (P)
phase. The lattice compresses and the deformation has a jump
∆u at the �rst order phase transition and changes continuously
at the second order one. A peak-like behaviour of the ∂u/∂p
function in the vicinity of the phase transition is also revealed.
This peak increases approaching the tricritical point where the
compressibility χ = −∂u/∂p diverges. Such behaviour of u(p)
and χ(p) coincides with the observed one.

Thermodynamics of Sn2P2S6 is also considered in the case of a
clamped crystal (regime u = const). As is shown, at T < TTCP the
region of deformation values is present in this regime, where the
crystal exists in a mixed state being separated into di�erently
strained fragments of the P and F phases. This mixed phase is
located between the ‘‘pure’’ P and F phases on the (T , u) phase
diagram. Such a state of the phase coexistence can be experi-
mentally identi�ed by measurement of the compressibility χ(u)
in the ‘‘clamped’’ regime in the area of the mixed state (here
χ(u) is a linear function on u in the interval [uP, uF]).
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