Geometrical Aspects of the Multicritical Phase Diagrams for the Blume-Emery-Griffiths Model

Nigar Alata^{1,2}, Rıza Erdem³

MECO46 The 46th International Conference

of the Middle European Cooperation in Statistical Physics

May 11-13, 2021 Riga, Latvia

¹ Akdeniz University, Institute of Science, 07058, Antalya, Turkey ² Akdeniz University, Food Safety and Agricultural Research Centre, 07058, Antalya, Turkey ³Akdeniz University, Physics Department, 07058, Antalya, Turkey

E-Mail: nigaralata@akdeniz.edu.tr

Abstract

A Ruppeiner metric is defined on a 2D phase space of dipolar (*M*) and quadrupolar (*Q*) order parameters for the spin-1 mean-field Blume-Emery-Griffiths model. Then, an expression for the Ricci scalar (*R*) is derived and temperature/crystal field variations of R are presented using four different phase diagram topologies introduced by Hoston and Berker (1991). Its behaviour near the continuous/discontinuous phase transition temperatures as well as the multicritical points is investigated. Besides the study of R along the phase equilibria we have located the R=0 boundry lines in the multicritical phase diagrams.

Model Hamiltonian [1-5]

K

D

	$\mathbf{H}\left\{S_{i}\right\} = -J$	$\sum_{\langle ij\rangle} S_i S_j -$	$-K\sum_{\langle ij\rangle}S_i^2S_j^2$ -	$-D\sum_{i}S_{i}^{2}$	
Spin variable	:			S_i	= -1, 0, +1
Nearest-neig	hbour spins	:			< ij >

Dipole-dipole interaction energy :	
Quadrupole-quadrupole interaction energy :	
Cyrstal field or single-ion anisotropy:	

Magnetic Gibbs Energy Functional [5]

$\phi(M,Q) = \frac{G}{zJ} = -\frac{1}{2}NM^2$	$-\frac{1}{2}NrQ^2 + NdQ - \theta \ln \Omega(M,Q)$
---	--

Lattice coordination number :	Z	
Number of spins :	N	
Magnetisation per lattice site :	$M = \langle S_i \rangle$	
Quadrupolar moment :	$Q = \langle S_i^2 \rangle$	
Reduced quantities :	r = K / zJ	d = D / zJ
Reduced temperature :	$\theta = kT / zJ$	
Temperature :	Т	

Numerical Calculations on *R*

Geometrical Aspects of the Multicritical Phase Diagrams

$\frac{\partial \phi}{\partial Q} = 0$ $\frac{\partial \phi}{\partial M} = 0$ Equilibrium conditions : $2\sinh(M/\theta)$ $\exp[(d-rQ)/\theta] + 2\cosh(M/\theta)$

Self-Consistent Equations [5]

Self-consistent equations :

Geometrical Perspective [6]

 $2\cosh(M/\theta)$

 $\exp\left[\left(d-rQ\right)/\theta\right]+2\cosh(M/\theta)$

Various thermodynamic coordinates :	$x^i (i=1,2,\ldots,n)$
Definition of a metric in a <i>n</i> -dimensional thermodynamic state space of coordinates :	$ds^2 = G_{ij}dx^i dx^j$
Metric tensor elements (Ruppeiner Metric) :	$G_{ii} = -\beta \partial_i \partial_i \phi$

References

[1] M. Blume et al., *Phys. Rev. A 4, 1071* (1971). [2] W. Hoston & A. N. Berker, *Phys. Rev. Lett.* 67, 8 (1991). [3] W. Hoston & A. N. Berker, J. Appl. *Phys. 70, 10* (1991).

[4] C. Ekiz & M. Keskin, *Phys. Rev. B 66, 054105* (2002). [5] A. Pawlak et al., Journal Magn. Magn. Mater. 395, 1 (2015). [6] G. Ruppeiner, *Rev. Mod. Phys.* 67, 605 (1995).