

A new method of solution of the Wetterich equation and its applications

where $\zeta_k(y) = 2y^2 r'(y) + \eta(k) y r(y)$, $w_k(\tilde{\rho}) = u'_k(\tilde{\rho}) + 2\tilde{\rho} u''_k(\tilde{\rho})$, $\mathcal{P}_k(\tilde{\rho}, y) = 0$ $w_k(\tilde{\rho}) + y[f_k(\tilde{\rho}; y) + r(y)]$ and

A new truncation scheme is proposed [1] to solve the Wetterich exact renormalization group equation [2, 3]

$$\frac{\partial}{\partial k}\Gamma_k[\phi] = \frac{1}{2} \text{Tr} \left\{ \left[\Gamma_k^{(2)}[\phi] + R_k \right]^{-1} \frac{\partial}{\partial k} R_k \right\}$$
(1)

for the the effective average action $\Gamma_k[\phi]$, depending on the infrared cut-off scale k. The natural domain of validity of the derivative expansion appears to be limited to small values of normalized wave vectors q/k. To the contrary, the new approximation scheme has the advantage to be valid for any q/k, therefore, it can be auspicious in many current and potential applications of the celebrated Wetterich equation and similar models. In distinction from the derivative expansion, derivatives are not truncated at a finite order in the new scheme. The derivative expansion up to the ∂^2 order is just the small-q approximation of our new equations at the first order of truncation. The RG flow equations at this order are derived and approximately solved as an example. Furthermore, a new method of functional truncations is tested for such a solution.

The Wetterich equation

In the Wetterich equation (1), the average effective action $\Gamma_k[\phi]$ depends on the averaged order parameter $\phi(\mathbf{x})$ with components $\phi^j(\mathbf{x}) = \langle \chi^j(\mathbf{x}) \rangle$, $j = 1, \ldots, N$. Here, the averaging of the original order parameter χ is performed in the presence of external field $J(\mathbf{x})$, so that ϕ is determined by J. The effective action contains a smooth infrared (lower) cut-off of fluctuations with wave vector magnitude $q \leq k$, represented by the term R_k in (1). The upper cut-off at $q = \Lambda$ is also included. In the wave-vector space, the quantity $\Gamma_k^{(2)}[\phi]$ is a matrix with elements

$$\left(\Gamma_k^{(2)}\right)_{ij}(\mathbf{q},\mathbf{q'}) = \frac{\delta^2 \Gamma_k[\phi]}{\delta \phi^i(-\mathbf{q}) \,\delta \phi^j(\mathbf{q'})} \,. \tag{2}$$

The cut-off R_k is a diagonal matrix with elements $R_{k,ij}(\mathbf{q},\mathbf{q'}) = R_k(q) \,\delta_{ij} \,\delta_{\mathbf{q},\mathbf{q'}}$, $R_k(q) = R_k(q) \,\delta_{ij} \,\delta_{\mathbf{q},\mathbf{q'}}$ $(\alpha Z_k q^2)/(e^{q^2/k^2}-1)$, where Z_k is a renormalization constant and α is an optimization parameter. Derivatives of $\Gamma_k[\phi]$ are related to correlation functions.

$$\hat{C}_{k}(\tilde{\rho}, y) = \tilde{\rho} \,\tilde{K}_{d} \int_{0}^{\Lambda^{2}/k^{2}} \int_{0}^{\pi} \zeta_{k}(y_{1}) \,\Theta\left(\frac{\Lambda^{2}}{k^{2}} - Y\right) y_{1}^{\frac{d}{2}-1} (\sin\theta)^{d-2}$$

$$\times \frac{\left(w_{k}'(\tilde{\rho}) + \frac{1}{2} \left[yf_{k}'(\tilde{\rho}, y) + y_{1}f_{k}'(\tilde{\rho}, y_{1}) + Yf_{k}'(\tilde{\rho}, Y)\right]\right)^{2}}{\mathcal{P}_{k}(\tilde{\rho}, Y) \,\mathcal{P}_{k}^{2}(\tilde{\rho}, y_{1})} \,dy_{1}d\theta \,, \tag{6}$$

where $Y = y + y_1 + 2\sqrt{yy_1}\cos\theta$ and $\tilde{K}_d = S(d-1)/(2\pi)^d$, where S(d) is the area of the unit sphere in d dimensions.

Approximate solution and functional truncations

In [1], a simple polynomial approximation $u_k(\tilde{\rho}) \approx u_{0,k} + u_{1,k} \tilde{\rho} + u_{2,k} \tilde{\rho}^2$, and $f_k(\tilde{\rho}; y) \approx u_{0,k} + u_{1,k} \tilde{\rho} + u_{2,k} \tilde{\rho}^2$ $f_{0,k}(y) + f_{1,k}(y) \tilde{\rho}$ has been considered, showing that reasonable results can be obtained from our equations. Similar functional truncations within the derivative expansion have been used, e. g., in [4], with more terms included and $\tilde{\rho} - \tilde{\rho}_0$ instead of $\tilde{\rho}$, where $\tilde{\rho}_0$ corresponds to the minimum of the potential $u(\tilde{\rho})$. It provided estimates for critical exponents ν and η , those for the correction-to scaling exponent ω being not reported. The latter ones have been provided by a purely numerical solution on a grid in [5].

Recently, we have tested a new expansion:

$$u_k(\tilde{\rho}) - u_k(0) = (1 - s)^{-\mu} \left(u_{1,k} s + u_{2,k} s^2 + \dots \right),$$

$$f_k(\tilde{\rho}; y) = f_{0,k}(y) + f_{1,k}(y) s + f_{2,k}(y) s^2 + \dots$$
(8)

where $s = \tilde{\rho}/(\tilde{\rho} + \tilde{\rho}_0)$, $\mu = d/(d - 2 + \eta)$ and $\tilde{\rho}_0$ is a constant – an optimization parameter. It allows to interpolate between the expansion in powers of $\tilde{\rho}$ at $\tilde{\rho} \to 0$ and the large- $\tilde{\rho}$ asymptotic. Eventually, this method can give good estimates for ν , η and also ω . We have performed preliminary tests within the local potential approximation (LPA) (where $f_k(\tilde{\rho}; y) \equiv 1$) in three dimensions - see Fig. 1.

The new truncation scheme

We consider the effective action of the O(N) symmetric model at N = 1 in the following general form

$$\Gamma_{k}[\phi] = \int \left(U_{k}(\rho(\mathbf{x})) + V^{-1} \sum_{\mathbf{q}_{1},\mathbf{q}_{2}} \left[\theta_{k}^{(1)}(\rho(\mathbf{x});\mathbf{q}_{1}) + \theta_{k}^{(2)}(\rho(\mathbf{x});\mathbf{q}_{1},\mathbf{q}_{2}) \right] \phi(\mathbf{q}_{1})\phi(\mathbf{q}_{2})e^{i(\mathbf{q}_{1}+\mathbf{q}_{2})\mathbf{x}} \right. \\ \left. + V^{-2} \sum_{\mathbf{q}_{1},\mathbf{q}_{2},\mathbf{q}_{3},\mathbf{q}_{4}} \left[\theta_{k}^{(3)}(\rho(\mathbf{x});\mathbf{q}_{1},\mathbf{q}_{2},\mathbf{q}_{3}) + \theta_{k}^{(4)}(\rho(\mathbf{x});\mathbf{q}_{1},\mathbf{q}_{2},\mathbf{q}_{3},\mathbf{q}_{4}) \right] \phi(\mathbf{q}_{1})\phi(\mathbf{q}_{2})\phi(\mathbf{q}_{3})\phi(\mathbf{q}_{4}) \\ \left. \times e^{i(\mathbf{q}_{1}+\mathbf{q}_{2}+\mathbf{q}_{3}+\mathbf{q}_{4})\mathbf{x}} + \cdots \right) d\mathbf{x} ,$$
(3)

where $\rho = \phi^2/2$, and $\theta_k^{(m)}(\rho(\mathbf{x}); \mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_m) = 0$, if $\mathbf{q}_j = 0$ holds for any of $j \in \mathbb{R}$ [1, m]. The term with $\theta_k^{(m)}$ includes in a closed form all relevant (corresponding to the symmetry of the model) terms of the kind $\phi^{\ell} \frac{\partial^{\alpha_1} \phi}{\partial \mathbf{x}^{\alpha_1}} \frac{\partial^{\alpha_2} \phi}{\partial \mathbf{x}^{\alpha_2}} \cdots \frac{\partial^{\alpha_m} \phi}{\partial \mathbf{x}^{\alpha_m}}$, where $\alpha_j = (\alpha_{j1}, \alpha_{j2}, \dots, \alpha_{jd})$ is the multi-index in the standard notations of the functional analysis. The derivative expansion is recovered from (3) by expanding the functions $\theta_k^{(m)}$ in small q_j limit. In (3), however, the magnitudes of wave vectors q_i need not to be small.

We propose an approximation scheme, where terms $\theta_{k}^{(j)}$ with $j \leq m$ are included in the *m*-th approximation. It is a truncation. However, at any m, the order of derivatives included is not limited. This is a salient difference from a truncated derivative expansion.

At m = 1, we denote $\theta_k^{(1)}(\rho; \mathbf{q}) = \theta_k(\rho; \mathbf{q})$ and use a transformed variable $\Psi_k(\rho; \mathbf{q}) = 0$ $\theta_k(\rho; \mathbf{q}) + 2\rho \theta'_k(\rho; \mathbf{q})$. Furthermore, we write our equations in a dimensionless form with $\Psi_k(\rho; \mathbf{q}) = \frac{1}{2} Z_k q^2 f_k(\tilde{\rho}; y)$, where $y = q^2/k^2$, $\tilde{\rho} = Z_k k^{2-d} \rho$ and $Z_k =$ $\lim_{q\to 0} \left(\frac{2}{q^2}\Psi_k(0;\mathbf{q})\right)$, as well as $U_k(\rho) = k^d u_k(\tilde{\rho})$ and $R_k(q) = Z_k q^2 r(y)$. We consider the running exponent $\eta(k) = -\frac{d}{dt} \ln Z_k$, where $t = \ln\left(\frac{k}{\Lambda}\right)$.

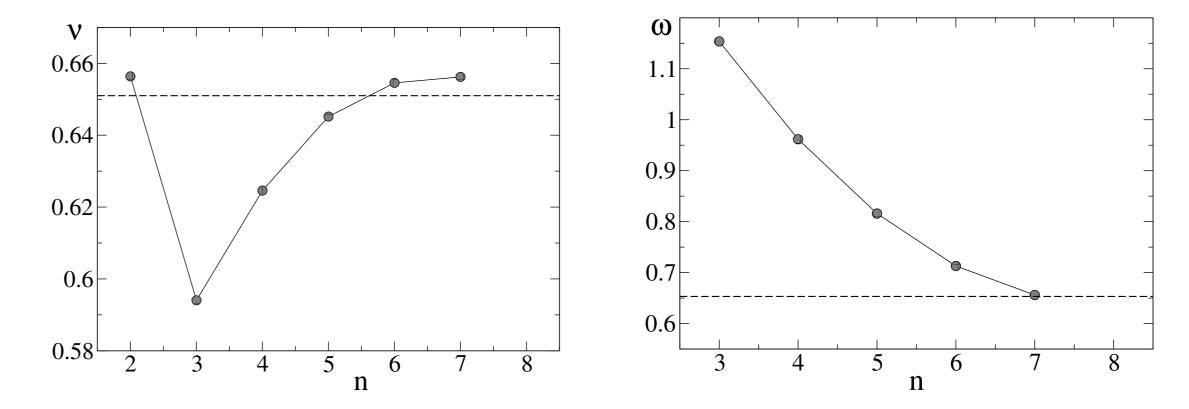
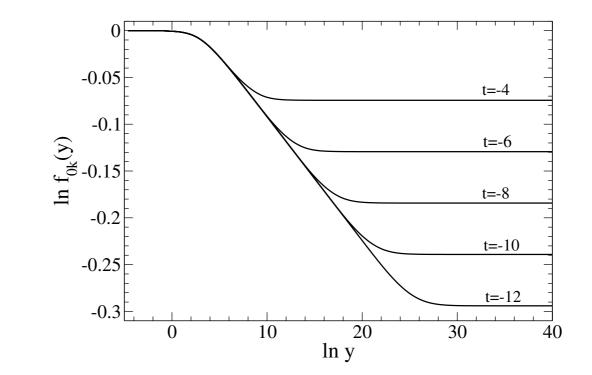


FIGURE 1: The values of ν (left) and ω (right) obtained within LPA depending on the truncation order n in (7). The dashed lines indicate numerical values reported in [5]. Not yet optimized values of $\alpha = 2$ and $\tilde{\rho}_0 = 0.5$ are used.

Testing beyond the LPA is in progress. It is already clear that the new expansion provides better results for ν and η than the expansion in powers of $\tilde{\rho}$ at low orders of truncation. We have calculated also the scaling function $f_k(\tilde{\rho}; y)$, related to the two-point correlation function:



The above transformations lead to the following RG flow equations:

$$\begin{split} \frac{\partial u_k(\tilde{\rho})}{\partial t} &= -d \, u_k(\tilde{\rho}) + (d-2+\eta(k)) \tilde{\rho} \, u_k'(\tilde{\rho}) - \frac{K_d}{4} \int_0^{\Lambda^2/k^2} \frac{y^{\frac{d}{2}-1} \zeta_k(y) dy}{\mathcal{P}_k(\tilde{\rho}, y)} \,, \\ \frac{\partial f_k(\tilde{\rho}; y)}{\partial t} &= \eta(k) f_k(\tilde{\rho}; y) + \tilde{\rho} (d-2+\eta(k)) f_k'(\tilde{\rho}; y) + 2y \frac{\partial f_k(\tilde{\rho}; y)}{\partial y} \\ &+ \frac{K_d}{4} \Big(f_k'(\tilde{\rho}; y) + 2\tilde{\rho} f_k''(\tilde{\rho}; y) \Big) \int_0^{\Lambda^2/k^2} \frac{y_1^{\frac{d}{2}-1} \zeta_k(y_1) dy_1}{\mathcal{P}_k^2(\tilde{\rho}, y_1)} - y^{-1} \left[\hat{C}_k(\tilde{\rho}, y) - \hat{C}_k(\tilde{\rho}, 0) \right] \,, \end{split}$$

The critical scaling function $f_k(\tilde{\rho}; y)$ at different renormalization scales t. A smooth upper cut-off, related to the large-y crossover, has been used for convenience. The crossover at $y \sim 1$ is induced by the infrared cut-off.

References

[1] J. Kaupužs, R. V. N. Melnik, A new method of solution of the Wetterich equation and its applications, J. Phys. A: Math. Theor. 53, 415002 (2020)

[2] Ch. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B **301**, 90 (1993) [3] J. Berges, N. Tetradis, Ch. Wetterich, Phys. Rep. 363, 223 (2002)

[4] L. Canet, B. Delamotte, D. Mouhanna, J. Vidal, Phys. Rev. B 68, 064421 (2003)

[5] I. Balog et al., Phys. Rev. Lett. **123**, 240604 (2019)

Jevgenijs Kaupužs^{a,b}, R. V. N. Melnik^b, Reinhard Mahnke^c

^a Institute of Technical Physics, Riga Technical University, LV-1048 Riga, Latvia ^b The MS2 Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Canada ^C Institute of Physics, Rostock University, Albert-Einstein-Str. 23, D-18051 Rostock, Germany

(4)

(5)