
A new method of solution of the Wetterich

equation and its applications

Abstract
A new truncation scheme is proposed [1] to solve the Wetterich exact renormalization group
equation [2, 3]
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for the the effective average action Γk[φ], depending on the infrared cut-off scale k. The natural
domain of validity of the derivative expansion appears to be limited to small values of normal-
ized wave vectors q/k. To the contrary, the new approximation scheme has the advantage to
be valid for any q/k, therefore, it can be auspicious in many current and potential applications of
the celebrated Wetterich equation and similar models. In distinction from the derivative expan-
sion, derivatives are not truncated at a finite order in the new scheme. The derivative expansion
up to the ∂2 order is just the small-q approximation of our new equations at the first order of
truncation. The RG flow equations at this order are derived and approximately solved as an
example. Furthermore, a new method of functional truncations is tested for such a solution.

The Wetterich equation

In the Wetterich equation (1), the average effective action Γk[φ] depends on the averaged order
parameter φ(x) with components φj(x) = 〈χj(x)〉, j = 1, . . . , N . Here, the averaging of
the original order parameter χ is performed in the presence of external field J(x), so that φ is
determined by J . The effective action contains a smooth infrared (lower) cut-off of fluctuations
with wave vector magnitude q . k, represented by the term Rk in (1). The upper cut-off at
q = Λ is also included. In the wave-vector space, the quantity Γ

(2)
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Γ
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)
ij
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The cut-off Rk is a diagonal matrix with elements Rk,ij(q,q′) = Rk(q) δij δq,q′, Rk(q) =

(αZkq
2)/(eq

2/k2 − 1), where Zk is a renormalization constant and α is an optimization pa-
rameter. Derivatives of Γk[φ] are related to correlation functions.

The new truncation scheme
We consider the effective action of the O(N) symmetric model at N = 1 in the following
general form
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where ρ = φ2/2, and θ(m)
k (ρ(x);q1,q2, . . . ,qm) = 0, if qj = 0 holds for any of j ∈

[1,m]. The term with θ(m)
k includes in a closed form all relevant (corresponding to the symme-

try of the model) terms of the kind φ` ∂
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∂xαm , where αj = (αj1, αj2, . . . , αjd)

is the multi-index in the standard notations of the functional analysis. The derivative expansion
is recovered from (3) by expanding the functions θ(m)

k in small qj limit. In (3), however, the
magnitudes of wave vectors qj need not to be small.

We propose an approximation scheme, where terms θ(j)
k with j ≤ m are included in the m-th

approximation. It is a truncation. However, at any m, the order of derivatives included is not
limited. This is a salient difference from a truncated derivative expansion.

At m = 1, we denote θ(1)
k (ρ;q) = θk(ρ;q) and use a transformed variable Ψk(ρ;q) =

θk(ρ;q) + 2ρ θ′k(ρ;q). Furthermore, we write our equations in a dimensionless form
with Ψk(ρ;q) = 1
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, as well as Uk(ρ) = kduk(ρ̃) and Rk(q) = Zkq
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the running exponent η(k) = − d
dt lnZk, where t = ln
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)
.

The above transformations lead to the following RG flow equations:
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Ĉk(ρ̃, y)− Ĉk(ρ̃, 0)
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where ζk(y) = 2y2r′(y) + η(k) yr(y), wk(ρ̃) = u′k(ρ̃) + 2ρ̃ u′′k(ρ̃), Pk(ρ̃, y) =
wk(ρ̃) + y[fk(ρ̃; y) + r(y)] and
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where Y = y + y1 + 2
√
yy1 cos θ and K̃d = S(d − 1)/(2π)d, where S(d) is the area of

the unit sphere in d dimensions.

Approximate solution and functional truncations

In [1], a simple polynomial approximation uk(ρ̃) ≈ u0,k + u1,k ρ̃ + u2,k ρ̃
2, and fk(ρ̃; y) ≈

f0,k(y) + f1,k(y) ρ̃ has been considered, showing that reasonable results can be obtained
from our equations. Similar functional truncations within the derivative expansion have been
used, e. g., in [4], with more terms included and ρ̃− ρ̃0 instead of ρ̃, where ρ̃0 corresponds to
the minimum of the potential u(ρ̃). It provided estimates for critical exponents ν and η, those
for the correction-to scaling exponent ω being not reported. The latter ones have been provided
by a purely numerical solution on a grid in [5].

Recently, we have tested a new expansion:

uk(ρ̃)− uk(0) = (1− s)−µ
(
u1,k s + u2,k s

2 + . . .
)
, (7)

fk(ρ̃; y) = f0,k(y) + f1,k(y) s + f2,k(y) s2 + . . . (8)

where s = ρ̃/(ρ̃+ ρ̃0), µ = d/(d− 2 + η) and ρ̃0 is a constant – an optimization parameter.
It allows to interpolate between the expansion in powers of ρ̃ at ρ̃→ 0 and the large-ρ̃ asymp-
totic. Eventually, this method can give good estimates for ν, η and also ω. We have performed
preliminary tests within the local potential approximation (LPA) (where fk(ρ̃; y) ≡ 1) in three
dimensions - see Fig. 1.
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FIGURE 1: The values of ν (left) and ω (right) obtained within LPA depending on the truncation order n in (7). The
dashed lines indicate numerical values reported in [5]. Not yet optimized values of α = 2 and ρ̃0 = 0.5 are used.

Testing beyond the LPA is in progress. It is already clear that the new expansion provides better
results for ν and η than the expansion in powers of ρ̃ at low orders of truncation. We have
calculated also the scaling function fk(ρ̃; y), related to the two-point correlation function:
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The critical scaling function fk(ρ̃; y) at different renormalization scales t. A smooth upper cut-off, related to the
large-y crossover, has been used for convenience. The crossover at y ∼ 1 is induced by the infrared cut-off.
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