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INTRODUCTION

Dissipation is a statistical process caused by the coupling between
the system and its environment. The equation of motion for such a
process cannot be derived from a Lagrangian (because the equa-
tion contains a non-self-adjoint differential operator) if only the de-
grees of freedom corresponding to the system are considered. If
more degrees of freedom are added, it is possible to obtain the
correct equations from a Lagrangian. One way of doing so is by
including the environment[1, 2] into the problem, which is a phys-
ics motivated idea. Another way, is to introduce some abstract
mathematical function, for example, a potential which generates
the physical observable[3, 4, 5, 6]. This is more of a mathematical
workaround and only doubles the degrees of freedom instead of
adding infinitely many of them. Also, this approach eliminates the
problem of choosing a proper model for the environment.

FORMULATING THE THEORY

Consider the dissipative process described by Du(t) = c(t), where
D is a non-self-adjoint linear differential operator. The potential
that generates the measurable can be defined using u(t) = D̃φ(t),
where D̃ is the adjoint ofD. For φ(t), the Lagrangian and the Euler–
Lagrange equations are

Lagrangian and equation of motion for the potential

L =
1

2

(
D̃φ(t)

)
·
(
D̃φ(t)

)
− φ(t) · c(t),

0 = D
(
D̃φ(t)

)
− c(t).

As the method is based on doubling the degrees of freedom, it
can be assumed that the solution may contain non-physical terms.
Indeed, if one separates the solution φ(t) = ϕ(t) + λ(t) where
ϕ(t) ∈ Im(D̃), and λ(t) ∈ Ker(D̃), then calculates the measurable
quantity, it is clear that ϕ(t) must contain all information and λ(t)

must contain none. Usually the non-physical terms are exponen-
tially increasing.

At the level of potentials, only half of the initial conditions are
provided by the original physical problem, the other half can be
chosen freely. The benefit of this freedom is that the initial condi-
tions can be chosen in a way that ensures the vanishing of non-
physical terms. This choice is unique and exists, however highly
non-trivial in general. There is no systematic way to perform this
task at the moment, only if the analytical solution is known, so nu-
merically solvable equations are unstable.

POTENTIAL FOR THE DAMPED HARMONIC OSCILLATOR

The damped harmonic oscillator is the most elementary classical
mechanical system that shows dissipative behaviour. It is also the
perfect model to demonstrate the essence of this method.

Smart choice of initial conditions

Du(t) = c(t) → ẍ + 2λẋ + ω2x = 0

D̃φ(t) = u(t)→ φ̈− 2λφ̇ + ω2φ = x

L =
1

2

(
φ̈− 2λφ̇ + ω2φ

)2

(1)(
d2

dt2
+ 2λ

d

dt
+ ω2

)(
d2

dt2
− 2λ

d

dt
+ ω2

)
φ = 0 (2)

φ(t) = a1e
−(λ+γ)t + a2e

−(λ−γ)t + b1e
(λ+γ)t + b2e

(λ−γ)t, (3)

where γ =
√
λ2 − ω2

Smart choice of initial conditions

φ(0) =
2λx0 + v0
4λ(λ2 − γ2)

φ̇(0) = −x0
4λ

φ̈(0) = − v0
4λ

...
φ (0) =

(λ2 − γ2)x0 + 2λv0
4λ

a1 =
(γ − λ)x0 − v0
8γλ(λ + γ)

a2 =
(γ + λ)x0 + v0
8γλ(λ− γ)

b1 = 0

b2 = 0

LAGRANGIAN OF TELEGRAPHER’S HEAT CONDUCTION
Although the damped oscillator seems redundant, it appears in
many models. There are many systems that can be transformed
into a damped oscillator problem. One such equation is the tele-
grapher’s heat transport (a la Maxwell–Cattaneo–Vernotte). Using
a spatial Fourier-transform, the problem reduces to the dissipative
harmonic oscillator.
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Figure 1: We simulated heat conduction in a one dimensional
silicon bar in the range of 30 − 70, brought into contact with dif-
ferent temperature media on its left and right. The temperature
distribution is plotted at different times.

OUTLOOK
It is important to keep in mind that the main goal of trying to provide
an easy-to-use Lagrangian description of dissipative systems is
that it seems beneficial to take advantage of the tools coming along
with the Lagrangian framework. These tools include the ease of
coupling systems, utilizing symmetries, and the possibility of quant-
ization.
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