Knots are Generic Stable Phases in Semiflexible Polymers
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Abstract

While investigations of knots in polymers have lured scientists for decades,
the existence of phases characterized by a stable knot of specific type has at-
tracted attention only recently. In this work, we treat two popular models that
encompass the complete spectrum of real polymers (flexible to stiff) via exten-
sive replica exchange Monte Carlo simulations, and show that the existence of
stable knots in the phase diagram depends only on the ratio 7, /7,,i,, Where 7 is
the equilibrium bond length and 7., 1s the distance for the strongest nonbonded
contacts 1n an attractive Lennard-Jones (LJ) potential. Our results provide ev-
1dence that 1rrespective of the specific model, bead-stick or bead-spring, if the
ratio ry, /7, is outside a small window around unity then one always encounters
for semiflexible polymers stable knotted phases at low temperatures.

Introduction

In a previous work [1] from our group, it was reported that along with the various typical conforma-
tions, one observes knots as one of the stable phases for a bead-stick semifiexible polymer. This 1s
in contrast to a similar work using a bead-spring polymer by Seaton et al. [2], where the presence of
knots was not mentioned.

Seaton et al.
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Questions

= Are knots specific to bead-stick polymers ?
= Else, did Seaton et al. simply not search for knots ?

= Do the existence of knots in a polymer depend only on the ratio /7, ?

Models

We consider two semiflexible polymer models: (1) bead-stick and (i1) bead-spring. Monomers are
considered to be spherical beads with diameter o, and the nonbonded interaction energy 1s given as
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1s the standard LJ potential with a minimum at r,;; = 21/65. In the bead-stick model the bonds are
rigid with fixed length 7. In the bead-spring model the bond energy 1s given by the standard finitely
extensible non-linear elastic (FENE) potential
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where 7, 1s the equilibrium bond distance, and we set R = 0.3 and K = 40.
In both models the bending energy penalty 1s given by
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where 6; is the angle between consecutive bonds and « is the bending stiffness of the polymer. We
perform simulations of both models for a range of r} /7, values.

Simulation Details and Analyses

We use the two-dimensional replica exchange (2D-RE) simulations [1, 3] by splitting the system
Hamiltonian as

H = Ey+ kb7, 4)

where [ 1s the base energy defined in Eq. (1) and (if any) in Eq. (2), and Ej 1s the energy
per k In Eq. (3). In the simulation parameter space (I, x), the exchange probability 1s given as
p(p <> v) =min [1,exp(ABAE) + A(Br)AE])], where 8 = 1/kgT. The 2D version of the weighted
histogram analysis method [4] 1s used for generating appropriate canonical estimates.

Knot Identification in Polymer

Then, knots are identified using a vari-
ant [5] of the corresponding Alexander
polynomial A(t) as

First, a closure scheme 1s applied
on the open polymer as following:

Ap(t) = [A(®) x A(L/8)], )

evaluated at ¢t = —1.1. This de-
fines the invariant knot parameter D =
3D view 2D-projection on xy-plane closure scheme Ap ( —1. 1) ,
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Results [6]
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— Stable knots do exist for bead-spring polymer as well. For N = 14, they are trefoil knots (37).
—> Possibly, then the ratio /7, is the key to stable knots.

Stability of bent vs knotted conformation
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Speculation: Knots are more likely to be stable conformations for semiflexible polymers, if 73, # rpyip.

Existence of knots for varying r, /7r,in ((D) = 9.05463 = 3, knot)
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e Indeed knots do exist for both models if 73, # r,i;,.
e S0, Seaton et al. would not have observed knots simply because for their model rp = ry,;y,.

e This fact has been verified from simulation results of our bead-spring model with parameters anal-
ogous to their model.

Conclusions

& We have investigated the existence of knotted phases in semiflexible polymers via 2D-RE simula-
tions of a bead stick and a bead spring model.

& From simple qualitative arguments, we understood that if the ratio 7y /7, is not close to unity,
then one always observes stable knots in semiflexible polymers, irrespective of the model. Our
simulation results support this.

@& From this point of view, it would also be worth exploring the sequence dependent formation of
knotted structures in semiflexible heteropolymer, a paradigm for proteins.
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