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Our dynamical network model

At each step, select an agent i randomly, then

I if ki > κ, choose a neighbour of i and delete the link with it with probability (1− Jσiσj)/2,

I if ki < κ, choose a non-neighbour of i and add a link with it with probability (1 + Jσiσj)/2.

where κ represents the preferred degree, set as a half-integer; ki, σi(σi = ±1) are the degree and
opinion of agent i respectively. J ∈ [−1, 1] is to characterize the level of homophily.
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ki: Degree of node i.

In this case, ki = 3.

If κ = 2.5Cross link (CL)

Internal link (IL)

Figure: Illustration of the evolution rule

Quantities of interest

I The degree distribution: pσ ≡ 〈δ(k− ki)δ(σ−σi)〉, where δ is the Kronecker delta function;

I The average degree and variance: µσ ≡
∑
k kpσ(k) and Vσ ≡

∑
k k

2pσ − µ2σ;

I The fraction of CLs: ρ ≡ L×/L, where L is the total number of connections, and L× is the
total number of CLs.

Techniques

Suppose there are N agents overall, and the fraction of “adders” is α.

... ...

Nodes of degree less than κ Nodes of degree greater than κ

e.g. κ = 2.5

Assumption: the population of the left set would fluctuate around α∗N , while the population of
the right set would fluctuate around (1− α∗)N.

Mean-field analysis

Denote by L× and L� the number of CLs and ILs, respectively. The rate for L× to increase is

α · 12 ·
1−J
2 , while for L× to decrease is (1− α) · 1+J2 · ρ. In the steady state, balancing these

contributions leads to

α(1− J) = 2(1− α)(1 + J)ρ,

where ρ :=

∑N
i,j=1 aij(1−σiσj)/2

2N , i.e., the fraction of CLs. (aij) is the adjacency matrix of the
network.
Similarly, by balancing the increase and decrease of L�, we have

α(1 + J) = 2(1− α)(1− J)(1− ρ).

Solving the above equations, we find the mean-field predictions for the steady state values:

α =
1

2
(1− J2), ρ =

1

2
−

J

1 + J2
.

Figure: α and ρ in the case N = 1000,m = 0 and κ = 4.5. Lines are from the above equations and symbols are
from simulations, average of data after 100 MCS.

Stationary degree distribution

Denote by p(k, t) the fraction of nodes of degree k in the network. Then we have the following
mean-field equations for p(k, t). If Ra(k) and Rc(k) are the rates at which a node of degree k
adds or cuts a link, then p(k, t) obeys

dp(k, t)

dt
=Ra(k − 1)p(k − 1, t) +Rc(k + 1)p(k + 1, t)

− [Ra(k) +Rc(k)]p(k, t).

We can find the rates

Ra '
1

2
[H(κ− k) + α], Rc ' χ[H(k − κ) + (1− α)],

where χ := 1
2(1− J)(1− ρ) +

1
2(1 + J)ρ and H is the Heaviside step function.

We obtain the stationary degree distribution as

p(k) =



(
1 + J2

3 + J2

)k−bκc
for k > κ,(

1− J2

3− J2

)dκe−k
for k < κ.

Simulation results

Figure: Degree distribution p(k) vs. degree k for κ = 20.5 and J = 0 (blue), J = 0.5 (red) and J = 0.8 (yellow).

Average and variance of Degrees

Now the average and the variance of degrees can be obtained directly from p(k)

µ = 〈k〉 =
κ1 + κ2

2
+

3J2

2
,

〈k2〉 = (κ21 + κ22 + 3J2(κ1 + κ2) + 5J4 + 3)/2,

V = 〈k2〉 − 〈k〉2 = (7 + J4)/4,

where κ1 = bκc and κ1 = dκe.
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Figure: µ− κ and V (k) vs J for different preferred degree: κ = 5.5 (×), 20.5 (◦), and 70.5 (�). Lines are the
average and variance of (??); markers are from simulations. Data are collected after 2000 MCS.

Future work

I Study the case when m 6= 0, i.e., N+ 6= N−;

I Characterizing the phase transition when m 6= 0;

I · · ·


