Mean-field analysis

Denote by L_{\times}and L_{\odot} the number of CLs and ILs, respectively. The rate for L_{\times}to increase is $\alpha \cdot \frac{1}{2} \cdot \frac{1-J}{2}$, while for L_{\times}to decrease is $(1-\alpha) \cdot \frac{1+J}{2} \cdot \rho$. In the steady state, balancing these contributions leads to

$$
\alpha(1-J)=2(1-\alpha)(1+J) \rho
$$

where $\rho:=\frac{\sum_{i, j=1}^{N} a_{i j}\left(1-\sigma_{i} \sigma_{j}\right) / 2}{2 N}$, i.e., the fraction of CLs. $\left(a_{i j}\right)$ is the adjacency matrix of the
network.
Similarly, by balancing the increase and decrease of L_{\odot}, we have

$$
\alpha(1+J)=2(1-\alpha)(1-J)(1-\rho) .
$$

Solving the above equations, we find the mean-field predictions for the steady state values:

$$
\alpha=\frac{1}{2}\left(1-J^{2}\right), \rho=\frac{1}{2}-\frac{J}{1+J^{2}} .
$$

Figure: α and ρ in the case $N=1000, m=0$ and $\kappa=4.5 .5$ Lines are from the above equations and symbols are from simulations, average of data after 100 MCS.

Stationary degree distribution

Denote by $p(k, t)$ the fraction of nodes of degree k in the network. Then we have the following mean-field equations for $p(k, t)$. If $\boldsymbol{R}^{a}(k)$ and $\boldsymbol{R}^{c}(k)$ are the rates at which a node of degree k adds or cuts a link, then $p(k, t)$ obeys

$$
\begin{aligned}
\frac{d p(k, t)}{d t}= & R^{a}(k-1) p(k-1, t)+R^{c}(k+1) p(k+1, t) \\
& -\left[R^{a}(k)+R^{c}(k)\right] p(k, t) .
\end{aligned}
$$

We can find the rates
$R^{a} \simeq \frac{1}{2}[H(\kappa-k)+\alpha], R^{c} \simeq \chi[H(k-\kappa)+(1-\alpha)]$,
where $\chi:=\frac{1}{2}(1-J)(1-\rho)+\frac{1}{2}(1+J) \rho$ and H is the Heaviside step function. We obtain the stationary degree distribution as

$$
p(k)=\left\{\begin{array}{l}
\left(\frac{1+J^{2}}{3+J^{2}}\right)^{k-\lfloor\kappa\rfloor} \text { for } k>\kappa, \\
\left(\frac{1-J^{2}}{3-J^{2}}\right)^{\lceil\kappa\rceil-k} \text { for } k<\kappa
\end{array}\right.
$$

Simulation results

Figure: Degree distribution $p(k)$ vs. degree k for $\kappa=20.5$ and $J=0$ (blue), $J=0.5$ (red) and $J=0.8$ (yellow).

Average and variance of Degrees

Now the average and the variance of degrees can be obtained directly from $p(k)$

$$
\begin{gathered}
\mu=\langle k\rangle=\frac{\kappa_{1}+\kappa_{2}}{2}+\frac{3 J^{2}}{2}, \\
\left\langle k^{2}\right\rangle=\left(\kappa_{1}^{2}+\kappa_{2}^{2}+3 J^{2}\left(\kappa_{1}+\kappa_{2}\right)+5 J^{4}+3\right) / 2, \\
V=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\left(7+J^{4}\right) / 4,
\end{gathered}
$$

where $\kappa_{1}=\lfloor\kappa\rfloor$ and $\kappa_{1}=\lceil\kappa\rceil$.

Future work

- Study the case when $m \neq 0$, i.e., $N_{+} \neq N_{-}$
- Characterizing the phase transition when $m \neq 0$;

