How does homophily shape the topology of a dynamic network?
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Our dynamical network model

At each step, select an agent 2 randomly, then
> if k; > K, choose a neighbour of 7 and delete the link with it with probability (1 — Jo;0;)/2,
> if k; < K, choose a non-neighbour of 2 and add a link with it with probability (1 + Jo;0;)/2.

where K represents the preferred degree, set as a half-integer; k;, 0;(o; = £1) are the degree and
opinion of agent % respectively. J € [—1, 1] is to characterize the level of homophily.
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Figure: lllustration of the evolution rule

Quantities of interest

» The degree distribution: pg = (d(k — k;)0(0 — o;)), where ¢ is the Kronecker delta function;

> The average degree and variance: g = > 1 kpo(k) and Vo = > 1 k?py — 2,

» The fraction of CLs: p = L« /L, where L is the total number of connections, and L is the
total number of CLs.

Suppose there are IN agents overall, and the fraction of “adders” is a.
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Assumption: the population of the left set would fluctuate around ™ N, while the population of
the right set would fluctuate around (1 — a™)N.

Mean-field analysis

Denote by Ly and L the number of CLs and ILs, respectively. The rate for L x to increase is
o - % ‘ # while for Ly to decrease is (1 — ) - # - p. In the steady state, balancing these

contributions leads to
a(1—J) =2(1—a)(1 + J)p,

N
where p := 2i,j=1 a%.72(N 7i95)/ , i.e., the fraction of CLs. (a;;) is the adjacency matrix of the
network.

Similarly, by balancing the increase and decrease of L), we have

a(l4+J) =21 — a)(1— J)(1— p).

Solving the above equations, we find the mean-field predictions for the steady state values:
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Figure: e and p in the case N = 1000, m = 0 and K = 4.5. Lines are from the above equations and symbols are
from simulations, average of data after 100 MCS.

Stationary degree distribution

Denote by p(k,t) the fraction of nodes of degree k in the network. Then we have the following
mean-field equations for p(k,t). If R%(k) and R€(k) are the rates at which a node of degree k
adds or cuts a link, then p(k,t) obeys
dp(k,1)
dt

—R%k — 1)p(k — 1,t) + R°(k + 1)p(k + 1, 1)
— [R*(k) + R°(k)]p(k, t).

We can find the rates

RO ~ %[H(K, — k) +al], R®~ x[H(k — ) + (1 — a)],

where x 1= %(1 —J)(1 —p) + %(1 + J)p and H is the Heaviside step function.
We obtain the stationary degree distribution as
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p(k) = « g2\ [R1—k
for k < K.
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Simulation results
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Figure: Degree distribution p(k) vs. degree k for K = 20.5 and J = 0 (blue), J = 0.5 (red) and J = 0.8 (yellow).

Average and variance of Degrees

Now the average and the variance of degrees can be obtained directly from p(k)

K1+ K2 3.J2
o = <k> — o I 9 9
(k%) = (K3 + K3 + 3J%(k1 + K2) + 5 + 3) /2,

V = (k%) — (k) = (T +J%) /4,

where k1 = |k]| and kK1 = [K].
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Figure: p — k and V' (k) vs J for different preferred degree: k = 5.5 (X ), 20.5 (o), and 70.5 (©). Lines are the
average and variance of (?7); markers are from simulations. Data are collected after 2000 MCS.

» Study the case when m # 0, i.e., Ny # N_;
» Characterizing the phase transition when m # O;
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