How does homophily shape the topology of a dynamic network?

Xiang Li (mmxl@leeds.ac.uk) Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.

Our dynamical network model

At each step, select an agent $m{i}$ randomly, then

▶ if $k_i > \kappa$, choose a neighbour of i and delete the link with it with probability $(1 - J\sigma_i \sigma_j)/2$, ▶ if $k_i < \kappa$, choose a non-neighbour of i and add a link with it with probability $(1 + J\sigma_i\sigma_j)/2$. where κ represents the preferred degree, set as a half-integer; $k_i, \sigma_i(\sigma_i=\pm 1)$ are the degree and opinion of agent i respectively. $J \in [-1,1]$ is to characterize the level of homophily.

Figure: Illustration of the evolution rule

Quantities of interest

- ► The degree distribution: $p_{\sigma} \equiv \langle \delta(k k_i) \delta(\sigma \sigma_i) \rangle$, where δ is the Kronecker delta function;
- \blacktriangleright The average degree and variance: $\mu_\sigma\equiv\sum_k kp_\sigma(k)$ and $V_\sigma\equiv\sum_k k^2p_\sigma-\mu_\sigma^2$;
- \blacktriangleright The fraction of CLs: $ho \equiv L_{ imes}/L$, where L is the total number of connections, and $L_{ imes}$ is the total number of CLs.

Techniques

Suppose there are N agents overall, and the fraction of "adders" is lpha.

Assumption: the population of the left set would fluctuate around $lpha^*N$, while the population of the right set would fluctuate around $(1-lpha^*)N$.

Mean-field analysis

Denote by $L_{ imes}$ and L_{\odot} the number of CLs and ILs, respectively. The rate for $L_{ imes}$ to increase is $\alpha \cdot \frac{1}{2} \cdot \frac{1-J}{2}$, while for L_{\times} to decrease is $(1-\alpha) \cdot \frac{1+J}{2} \cdot \rho$. In the steady state, balancing these contributions leads to

$$lpha(1-J)=2(1-lpha)(1+J)
ho,$$

where $ho:=rac{\sum_{i,j=1}^Na_{ij}(1-\sigma_i\sigma_j)/2}{2N},$ i.e., the fraction of CLs. (a_{ij}) is the adjacency matrix of the network.

Similarly, by balancing the increase and decrease of L_{\odot} , we have $\alpha(1+J) = 2(1-\alpha)(1-J)($

Solving the above equations, we find the mean-field predictions for the steady state values:

0.4

0.2

Stationary degree distribution

Denote by p(k,t) the fraction of nodes of degree k in the network. Then we have the following mean-field equations for p(k,t). If $R^a(k)$ and $R^c(k)$ are the rates at which a node of degree kadds or cuts a link, then p(k,t) obeys

$$egin{aligned} rac{dp(k,t)}{dt} = & R^a(k-1)p(k-1,t) + R^c(k+1)p(k+1,t) \ & - [R^a(k) + R^c(k)]p(k,t). \end{aligned}$$

We can find the rates

$$R^a\simeq rac{1}{2}[H(\kappa-k)+lpha], \; R^c\simeq \chi[H(k-\kappa)+(1-lpha)],$$

where $\chi := rac{1}{2}(1-J)(1ho) + rac{1}{2}(1+J)
ho$ and H is the Heaviside step function. We obtain the stationary degree distribution as

$$p(k) = egin{cases} \left(egin{array}{c} 1+J^2 \ \overline{3}+J^2 \end{array}
ight)^{k-\lfloor\kappa
floor} & ext{for } k>\kappa, \ \left(egin{array}{c} 1-J^2 \ \overline{3}-J^2 \end{array}
ight)^{\lceil\kappa
floor-k} & ext{for } k<\kappa. \end{cases}$$

$$(1 - \rho).$$

$$\frac{J}{+J^2}$$
.

Simulation results

Average and variance of Degrees

Now the average and the variance of degrees can be obtained directly from p(k)

$$egin{aligned} \mu &= \langle k
angle = rac{\kappa_1 + \kappa_2}{2} + rac{3J^2}{2}, \ \langle k^2
angle &= (\kappa_1^2 + \kappa_2^2 + 3J^2(\kappa_1 + \kappa_2) + 5J^4 + 3)/2, \ V &= \langle k^2
angle - \langle k
angle^2 = (7 + J^4)/4, \end{aligned}$$

where $\kappa_1 = \lfloor \kappa \rfloor$ and $\kappa_1 = \lceil \kappa \rceil$.

Future work

- \blacktriangleright Study the case when m
 eq 0, i.e., $N_+
 eq N_-$; • Characterizing the phase transition when $m \neq 0$;
- ••••

Figure: $\mu - \kappa$ and V(k) vs J for different preferred degree: $\kappa = 5.5$ (×), 20.5 (°), and 70.5 (\diamond). Lines are the average and variance of (??); markers are from simulations. Data are collected after 2000 MCS.