How does homophily shape the topology of a dynamic network?

Xiang Li, Jian Li

Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.

Our dynamical network model

At each step, select an agent \(i \) randomly, then
- If \(k_i > \kappa \), choose a neighbour of \(i \) and delete the link with it with probability \((1 - J\sigma_i \sigma_j^*)/2 \).
- If \(k_i < \kappa \), choose a non-neighbour of \(i \) and add a link with it with probability \((1 + J\sigma_i \sigma_j^*)/2 \), where \(\kappa \) represents the preferred degree, set as a half-integer, \(\kappa_i, \sigma_i = \pm 1 \) are the degree and opinion of agent \(i \) respectively. \(J \in [-1,1] \) is to characterize the level of homophily.

Quantities of interest

- The degree distribution: \(p_\kappa \equiv \{ \delta(k - k_i) \delta(\sigma - \sigma_i) \} \), where \(\delta \) is the Kronecker delta function;
- The average degree and variance: \(\bar{\kappa} \equiv \sum_k k p_\kappa(k) \) and \(\nu_\kappa \equiv \sum_k k^2 p_\kappa(k) - \bar{\kappa}^2 \);
- The fraction of CLs: \(\rho \equiv L_{CL}/L \), where \(L \) is the total number of connections, and \(L_{CL} \) is the total number of CLs.

Techniques

Suppose there are \(N \) agents overall, and the fraction of "add" is \(\alpha \).

\[
\begin{align*}
\text{Nodes of degree less than } \kappa & : \rho_\kappa \\
\text{Nodes of degree greater than } \kappa & : \rho_{\kappa'} \qquad \kappa' = 2 \kappa
\end{align*}
\]

Assumption: the population of the left set would fluctuate around \(\alpha^2 N \), while the population of the right set would fluctuate around \((1 - \alpha^2)N\).

Mean-field analysis

Denote by \(L_{CL} \) and \(L_{IL} \) the number of CLs and ILs, respectively. The rate for \(L_{CL} \) to increase is \(\alpha \cdot \frac{1}{2} - \frac{1}{2} \rho \), while for \(L_{IL} \) to decrease is \((1 - \alpha) \cdot \frac{1}{2} - \frac{1}{2} \rho \). In the steady state, balancing these contributions leads to

\[
\alpha(1 - J) = (1 - \alpha)(1 + J) \rho,
\]

where \(\rho := \sum_i \sum_j \delta(k_i (1 - \sigma_i \sigma_j^*)/2) \), i.e., the fraction of CLs. \((\sigma_{ij}) \) is the adjacency matrix of the network.

Similarly, by balancing the increase and decrease of \(L_{IL} \), we have

\[
\alpha(1 + J) = (1 - \alpha)(1 - J)(1 - \rho).
\]

Solving the above equations, we find the mean-field predictions for the steady state values:

\[
\alpha = \frac{1}{2} (1 - J^2), \quad \rho = \frac{1}{2} \left(1 + J^2 \right).
\]

Stationary degree distribution

Denote by \(p(k, t) \) the fraction of nodes of degree \(k \) in the network. Then we have the following mean-field equations for \(p(k, t) \). If \(R^0(k) \) and \(R^e(k) \) are the rates at which a node of degree \(k \) adds or cuts a link, then \(p(k, t) \) obeys

\[
\frac{dp(k,t)}{dt} = R^0(k)(1-p(k-1,t)) + R^e(k)(1-p(k+1,t)) - [R^0(k) + R^e(k)]p(k,t),
\]

where \(R^0 \) and \(R^e \) are the rates of adding and removing links, respectively. We can find the rates

\[
R^e = \frac{1}{2} [H(k - \kappa) - \kappa], \quad R^0 = \chi [H(k - \kappa) + (1 - \alpha)],
\]

where \(\chi := \frac{1}{2} (1 - J) (1 - \rho) + \frac{1}{2} (1 + J) \rho \) and \(H \) is the Heaviside step function. We obtain the stationary degree distribution as

\[
p(k) = \begin{cases}
1 + J^2, & k = \kappa, \\
\frac{1}{2} [(1 + J^2) - k], & k > \kappa, \\
\frac{1}{2} [(1 + J^2) - k], & k < \kappa.
\end{cases}
\]

Average and variance of Degrees

Now the average and the variance of degrees can be obtained directly from \(p(k) \)

\[
\mu = \bar{k} = \kappa_1 + \kappa_2 = \frac{3J^2}{2},
\]

\[
\nu = \nu_\kappa = \left(\kappa_1^2 + \kappa_2^2 + \kappa_1 \kappa_2 + 2 \kappa_1 J^2 + 3 \right)/2,
\]

\[
V = \left(\kappa_1^2 - \kappa_2^2 \right) = (7 + J^4)/4,
\]

where \(\kappa_1 = \lfloor \kappa \rfloor \) and \(\kappa_2 = \lceil \kappa \rceil \).

Future work

- Study the case when \(\mu \neq 0 \), i.e., \(N_{-} \neq N_{+} \);
- Characterizing the phase transition when \(\mu \neq 0 \);
- ...