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Dept. of Physics

Biological systems need to react to stimuli over a broad spectrum of timescales, how these timescales can emerge without external fine-tuning is still 

a puzzle. We consider discrete Markovian systems which are governed by transition matrices, allowing us to leverage results from random matrix 

theory. An ensemble of transition matrices is considered, and we introduce and motivate a temperature-like parameter that controls the dynamic 

range of matrix elements. We show that a phase transition from full to sparse occurs whereby random matrix theory results breakdown. This phase 

transition signifies the emergence of a nontrivial Shannon entropy and is accompanied by a peak in complexity as measured by predictive 

information. The results are then applied to fMRI data of human subjects at wakeful rest and show that brain activity lies close to the phase transition 

when engaged in unconstrained, task-free cognition. 

Hidden Markov Models (HMM)

A HMM relates a set containing N 

hidden states {𝑥𝑁} with a set containing 

T observable states {𝑜𝑇}. This is done 

via a transition matrix M of size    N × 𝑁
with elements 𝑚𝑖𝑗 = P(𝑥𝑡+1 = j|𝑥𝑡 = i). 

Naturally the elements of M are 

normalized such that σ𝑗=1
𝑁 𝑚𝑖𝑗 = 1 and 

𝑚𝑖𝑗 ≥ 0. The out degree is the number 

of transitions to nodes out of a given 

node.

Brain Criticality Hypothesis

HMM have shown success in modelling a variety of biological systems 

including brain network dynamics [1]. Similar to how a pile of sand will reach 

a critical slope at which an avalanche will occur, brains are hypothesized to 

self organize into a quasicritical region around a critical state [2]. Most 

research on the critical brain hypothesis has occurred at the neuronal level, 

so it would be interesting to see if brains express such criticality at the scale 

of whole brain network dynamics. In subcritical and supercritical phases, 

correlation lengths are finite. But if a brain has to react to a wide variety of 

stimuli on very short time scales, then it needs to have a large susceptibility 

to external stimulus; ie: a large correlation length. For these reasons, the 

brain is hypothesized to be at or near a critical state.

Key Parameters

Sparsity, Temperature, and Structure

• The matrix for a HMM can be expressed in terms of a more 

primitive matrix: 𝑀𝑎𝑏 =
𝑄𝑎𝑏

σ𝑐 𝑄𝑎𝑐
such that a uniform matrix ത𝑄 has 

elements equal to 
1

𝑁
. The sparsity can be defined then as:                   

𝑠 𝑄 =
1

𝑁2
σ𝑎,𝑏 𝑙𝑜𝑔

2(
𝑄𝑎𝑏
ത𝑄
)

• A temperature parameter 𝜖 can be defined in terms of sparsity via:   

𝑠 =
1

2𝜖
showing that ‘cold’ matrices will have large sparsity 

whereas ‘hot’ matrices will have very little sparsity.

Shannon Entropy (condense and discuss entropy rate at end)

• Shannon entropy is a quantity H that measures the amount of 

information that a variable can contain. When H=0 there is 

complete certainty of the outcome, whereas for a given N from a 

matrix, H is maximized at log(N) indicating that there is a uniform 

distribution of probabilities for a result.[3]

• Define the entropy for a sequence of a sequence of length t as 

𝐻 𝑡 = 𝐻𝜋 + (𝑡 − 1)𝐻𝑑; then at large times H(t) is dominated by the 

entropy rate, shown as:  𝐻𝑑 = lim
𝑡→∞

1

𝑡
𝐻(𝑡) where 𝐻𝜋 is the entropy of 

the stationary distribution (for simplicity we only looked at ergodic 

samples)

Predictive Information

• Bialek, Nemenman, and Tishby [cite] formalized a notion from 

Grassberger [cite] that complexity can be measured by asking how 

quickly the entropy rate 𝐻𝑑 reaches its asymptotic value through the 

introduction of predictive information. 

• Predictive information can be measured through the following 

equation: 𝐼𝑝𝑟𝑒𝑑(𝑡) =
𝐻𝜋−𝐻𝑑

log 2
for discrete stationary Markov processes

• Predictive information can be understood as how well the past t 

states predict the entire future trajectory of the system

Relaxation Times

• Since 𝜆𝑡 = 𝑒𝑡𝑙𝑜𝑔(𝜆), the relaxation times of a discrete stationary 

Markov process can be calculated via: 𝜏 =
−1

log |𝜆|

Model systems in a way that allows identification of the phase 

transition from noisy behaviour into an ordered phase. Moreover, 

show that this phase transition identifies a point of criticality in 

dynamical HMM systems.

Starting with 𝑀𝑎𝑏 which has universal features in the large N limit, 

we consider 𝑄𝑎𝑏 that are identically and independently distributed 

with bounded density, mean 𝜇 = ഥ𝑀𝑒𝑁
2/4𝜖 & finite variance 𝜎2 =

ഥ𝑀𝑒
𝑁2

2𝜖 (𝑒
𝑁2

2𝜖 − 1). Where ഥ𝑀 is irrelevant, as N → ∞ the spectrum of 

𝑀𝑎𝑏 converges to the uniform law on the disk |𝜆| < 𝜆𝑐 in the 

complex plane, where 𝜆𝑐 =
𝜎

𝜇 𝑁
. The normalized spectrum for large 

N then allows us to predict a transition at ϵ log(𝑁 + 1) /𝑁2 =
1

2
.

The predicted transition represents a point of criticality for dynamical HMM 

systems, by using this first-principles theoretical prediction we show a simple 

scenario for the emergence of long time-scales in discrete Markovian systems, 

by varying the dynamic range of matrix elements. The results are then used to 

test the brain criticality hypothesis using fMRI data. 

By analogy, consider 

a particle with a large 

energy traversing a 

landscape with many 

minima, as 

temperature drops, it 

will eventually fall to 

rest in some 

particular minima.
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All code for this project is written in MATLAB, split between two 

main sections: one for the random HMM (RHMM) and one for the 

human data analysis (NHMM). The RHMM code is adapted from 

a previous project based off of DeGiuli(2019) [5]. The NHMM 

code was written from scratch with the exception of the 

generation of plots which used sections from the RHMM code. The NHMM code used data provided by Vidaurre [1]. It consisted of 820 subjects 

which each sat for four sessions for 1200 time steps each. The data was 

processed accordingly such that transition matrices could be built and measured. 

• Figure 1 shows the Shannon entropy rate of RHMM data normalized by its 

maximum value log(N) plotted against the temperature parameter ϵ which is 

normalized by it’s critical value. The normalized entropy rate tends to unity 

for large temperature, indicating that the transition sequences are 

indistinguishable from random noise, while low temperatures are nearly 

equal to 0, indicating that sequences are nearly deterministic

• Figure 2 plots the predictive information of RHMM data normalized by 

log(N), it peaks at an intermediate ϵ~0.1ϵ𝑐, showing that high and low-

temperature phases are separated by a phase transition.

• Figure 3 shows the distribution of temperatures for NHMM data, the mean 

value is indeed very near ϵ𝑐, a striking result given its status as a phase 

transition.

• Figure 4 is a probability distribution function of 1 − |𝜆| for the human data, 

which sheds light on the relaxation times. The distribution shows a a

distribution of short and long relaxation times, with more values leaning 

towards longer relaxation times.
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• Figure 5 shows the probability distribution of the normalized 

Shannon entropy rate, while the peak looks far off from the 

expected value based on figure 1, when taking into account 

the self-transitions, the expected value for Shannon entropy 

rate becomes 𝐻𝑑/𝑙𝑜𝑔𝑁 ≈ 0.26 which is exactly what is found

• Figure 6 shows the predictive information for human data, 

again the peak can be understood by taking into account the 

self transitions, leading to an expected value that is as 

follows: 𝐼𝑝𝑟𝑒𝑑/𝑙𝑜𝑔𝑁 ≈ 0.89 which is remarkably close to the 

measured mean value of 0.85

• The phase transition discussed here can be interpreted as a 

full-to-sparse transition of random matrices. Applied to the 

fMRI data, we found that human data lies very near the 

transition, supporting the brain criticality hypothesis.

• Since the ensemble includes all discrete Markov models, it 

can unify the study of disparate systems, in the goals of 

seeking universal patterns. This may shed light on the origin 

and possible universality of criticality in biological systems

The RHMM code consisted of two sets of data, each with 5 different sized 

matrices and 10 different temperature parameters. The first set had 300 replicas 

per matrix size and temperature with each replica being sampled 100 times with 

sequences of maximum length 4000. The second set of data had 1000 replicas 

per matrix size and no sampling occurred. 
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Illustrative networks at with N = 32 at temperatures (a) 𝜖/𝜖𝑐 = 10−2.4 ;        

(b) 𝜖/𝜖𝑐 = 10−0.6 ; (c) 𝜖/𝜖𝑐 = 100.6 . Edges are defined for matrix elements  

𝑀𝑎𝑏 > 𝑚𝑜 = 10−3and are coloured based on their weight. Nodes are 

coloured based on their out-degree.


