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ABSTRACT

In d > 2 dimensional, homogeneous threshold models discontinuous transition occur, but the mean-
field solution provides 1/t power-law activity decay and other power-laws, thus it is called mixed-order
or hybrid type. It has recently been shown that the introduction of quenched disorder rounds the
discontinuity and second order phase transition and Griffiths phases appear. Here we provide
numerical evidence, that even in case of high graph dimensional hierarchical modular networks the
Griffiths phase of the K = 2 threshold model is present below the hybrid phase transition. This is
due to the fragmentation of the activity propagation by modules, which are connected via single
links. This provides a widespread mechanism in case of threshold type of heterogeneous systems,
modeling the brain or epidemics for the occurrence of dynamical criticality in extended Griffiths phase
parameter spaces. We investigate this in synthetic modular networks with and without inhibitory links
as well as in the presence of refractory states.

HIERARCHICAL MODULAR NETWORKS

Scheme of network construction
The network was generated beginning with the highest level and adding modules to the next lower
level with random connectivity within modules. Lowest level got extra short links to provide single
connectedness. Edge density increases from top to bottom levels. Nodes are connected in a hierar-
chical modular way as if they were embedded in a regular two-dimensional lattice (HMN2d). Due to
this construction the Euclidean distance R obeys the relation p(R) ∼ R−s

Fig. 1: Plot of the adjacency matrix of an N = 1024-sized sample of the HMN2d graph. Black dots denote connections between nodes i and j.

The four-level structure is clearly visible in the blocks along the diagonal; additional long-range edges are scattered points around it.

• Fixed average node degree: 〈k〉 = 12

• Number of nodes in a level l: Nl = 4l+1, l = 0, 1, ..., lmax

Network Properties

• Topological dimension d is defined by N(r) ∼ rd

• Small-world type with d ∼ 4.18(5). In finite d we expect relevant rare regions, which flip very
slowly, causing non-universal, dynamical scaling around the critical point, called Griffiths
Phase

THRESHOLD MODEL

Two-state system: xi = 0, 1 (active,inactive)

• Conditional activation rule:
∑
j xjwi,j ≥ K.

If this is true

– nodes become active with activation probability λ

Otherwise,

– Nodes become inactive with deactivation probability ν = 1− λ

• Mean-field approximation: probability of site activation ρ and two active neighboring sites can
occur in a (N − 1)(N − 2)/2 way. In case of a global acceptance Λ, the creation rate is

1

2
(N − 1)(N − 2)Λρ2(1− ρ)

• Calling λ = (N − 1)(N − 2)Λ/2, for a full graph of N nodes the rate equation is

dρ

dt
= λ ρ2(1− ρ)− ν ρ

• Real and positive solution: Λc = 8
5(N−1)(N−2)

• At the transition point: ρ(t)− ρc ∼ t−1

Power-law (PL) behaviour in a discontinuous transition

MEASUREMENTS

• Density of active nodes ρ(t) = 1/N
∑N
i=1 xi

• A single pair of active nodes can trigger an avalanche of duration T and spatiotemporal size
s =

∑N
i=1

∑T
t=1 xi. It allows us to compute:

– probability density functions of avalanche sizes p(s)

– final survival time distributions p(t)

RESULTS FOR K=2

Excitatory Model: Weight of links: wij = 1

Fig. 2: Left: Avalanche size distributions. Dashed lines show PL fits for the tails: s > 1000 at λ = 0.315, 0.322, 0.33. Right: survival probability

of the activity. Dashed lines are PL fits for the tails of λ = 0.505, 0.52 curves. Right: survival probability of the activity. Dashed lines show PL fits

for the tails: s > 104 at λ = 0.315, 0.32, 0.322, 0.33.

Inhibitory Model: wij = 1 or −1 with probability 0.2

Fig. 3: Left: Avalanche size distributions. Inset: overlapping avalanches case for half-filled initial condition at λ = 0.51, 0.515, 0.52, 0.525 (bottom

to top symbols). Right: survival probability of the activity. Dashed lines are PL fits for the tails of λ = 0.505, 0.52 curves.

Inhibitory-refractory Model: Nodes stay for a time ∆ t in a refractory state following an activation;
they cannot fall back immediately to deactivation.

Fig. 4: PL fits for t > 1000. Left: The inset shows the oscillatory behavior of ρ(t) of a single run for ∆ t = 10. Right: The inset shows ρ(t) at

λ = 1, l = 7 averaged over 105 realizations. Blue squares: excitatory; red diamonds: inhibitory. Black bullets: BFS ρ(t) results. Dashed lines

are PL fits for the initial regions: 1 ≤ t < 10) resulting in effective dimensions: deff = 1.84(3) (excitatory), deff = 1.19(1) (inhibitory), d = 4.18(5)

(with ρ(t) ∼ rdeff and graph dimension estimated for 5 < r < 10).

• Griffiths phase (GP) can occur in high dimensional systems due to fragmentation of the
activity propagation caused by the modules

• Nonuniversal PLs suggest that Griffiths effects are present

Fig. 5: Steady-state behavior for the excitatory, inhibitory, and refractory-inhibitory cases. Inset: evolution of ρ in an inhibitory HMN2d with

N = 4096 for different initial activity densities: ρ(0) = 0.0005, 0.001, 0.01, 0.1, 1 (bottom to top curves).

• Discontinuous jump in ρ, metastability and GP: Hybrid Phase Transition!
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