Controlling particle currents with evaporation and resetting from an interval

r_c(x)

G. Tucci¹, A. Gambassi¹, S. Gupta^{2, 3}, E. Roldan³

[1] *Phys. Rev. Research* **2**, 043138

¹ SISSA - International School for Advanced Studies

² Department of Physics, Ramakrishna Mission Vivekananda

Educational and Research Institute

³ ICTP - The Abdus Salam Centre for Theoretical Physics

Stochastic resetting from an interval

Model: one dimensional Brownian motion resetting at space dependent rate $r_c(x) = r\theta(a - |x|)$ to a prescribed resetting point x_r .

Resetting on a ring

Model: Brownian particle resetting at space dependent rate $r_c(x)$ on (-L,L) with periodic boundary conditions; this ensures the existence of a **stationary state**.

Master Equation: $\partial_t P(x, t | x_0) =$ $D\partial_x^2 P(x,t|x_0) - r_c(x)P(x,t|x_0) + \delta(x-x_r) \int dy r_c(y)P(y,t|x_0).$ DIFFUSION LOSS DUE TO RESETTING GAIN DUE TO RESETTING $\times 10^{-1}$ i) Resetting induces a cusp at x_r at all times 1.0 P(x, t|x₀) **ii)** Diffusion is 0.0 responsible for Gaussian -2020 tails х

Brownian yet non-Gaussian: non-Gaussian distribution but

The total current *J* is composed by two contributions i) J_{diff} independent of the protocol;

Application: Modelling backtrack recovery of RNA polymerase

RNA polymerases along a DNA template during transcriptional Two recovery mechanisms from the inactive state pauses. ("backtracking"): i) Brownian diffusion, and ii) active cleavage of the

distribution **Distribution of the length of cleaved RNA** $Q_{res}(x = ay | x_0 = ay_0)$ $= \rho \frac{\sinh(y_{<}\rho)}{a\cosh\rho} \{1 - \theta(1 - y_{0}) [1 - \cosh((1 - y_{>})\rho)]\}$ **Cleavage efficiency** $\eta_{res}(y_0) \equiv \eta(x_0 = ay_0)$ $= 1 - \frac{\cosh((1-y_0)\rho) + \theta(y_0-1)[1+\cosh((1-y_0)\rho)]}{\cosh\rho}$ with $\rho = a_{\sqrt{r/D}}, y_{<} = \min(y, y_{0})$, and $y_{>} = \max(y, y_{0})$.

backtracked RNA. Model : evolution of the backtrack depth $x \ge 0$, i) diffusion in d = 1 starting from $x_0 > 0$ with an absorbing boundary in the origin, ii) resetting of the backtrack depth $x \rightarrow x_r = 0$ at a rate r from the region (0, a).

