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Discrete Element Model

Fig. 7. Identification of junction points

(blue dots) and macrocracks (straight red

lines connecting junctions) in a snapshot

of the damaged layer for the isotropic

case 𝒂 = 𝟎. 𝟎.

Fig. 1. Lamellar crack pattern which appears when

the container is initially vibrated in one direction.

When a beam breaks, a microcrack is formed along

the common edge of the two polygons. As

shrinking proceeds additional microcracks nucleate

and gradually grow by the breaking of adjacent

beams resulting in extended macrocracks. To obtain

a clear view on the structure of the evolving crack

pattern, we worked out an algorithm which

constructs the macrocracks of the layer starting

from individual microcracks. A macrocrack is

identified as a continuous path of polygon edges

with broken beams spanning between two junction

points. A junction point of the crack network is a

polygon corner from which either one, or three

microcracks start. Polygon corners where two

microcracks meet are considered to be internal

points of macrocracks, while junctions of one and

three microcracks are end points of arrested cracks,

and the merging points of independent cracks,

respectively (see Fig. 7).

We performed a large amount of

computer simulations varying the value

of a in the range of 0 ≤ 𝑎 ≤ 5 to reveal

how to anisotropy affects the evolution of

the fracture process and the structure of

the emerging crack network as the layer

gradually shrinks. To quantify the overall

damage suffered by the layer during the

fracture process, we introduced the

fraction of breaken bems d(t) with the

definition d(t)=Nb(t)/NB, where Nb and

NB denote the number of beams broken

up to time t and the total number of

beams in the layer in the initial state,

respectively. Our model contains solely a

single source of disorder, i.e. the

discretization of the material on a random

lattice of convex polygons which

introduces structural disorder without

any directional dependence.
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 In our study, cracking is found to evolve through three distinct phases of random nucleation

and growth of cracks aligned with the strong direction, secondary cracking in the

perpendicular direction, and finally binary fragmentation following the formation of a

connected crack network.

 The anisotropic crack pattern gives rise to fragments with a shape anisotropy which

gradually gets reduced as binary fragmentation proceeds.

 The statiscs of fragment masses exhibits a high degree of robustness which can be

described by a log-normal functional form at all anisotropies.

Fig. 2. Main components of the model

construction: the shrinking layer is

discretized in terms of convex polygons.

The polygons and beams (yellow lines) in

between represent material elements and

their cohesive breakable contacts,

respectively. The adhesion of the layer is

captured by spring coupling the center of

polygons to the substrate. The boundary

polygons of the sample, highlighted by

blue color, are fixed to the container wall

(red cylinder around the sample).

Fig. 4. Time evolution of cracking in an isotropic

a=0.0. Snapshots are presented at different values

of the fraction of broken fibers d: (a) 0.06, (b) 0.14,

(c) 0.22 and (d) 0.30.
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Shrinkage induced cracking of thin material layers attached to a rigid substrate is abundant

in nature giving rise to the formation of spectacular polygonal crack patterns. Examples can

be mentioned on a wide range of length scales from dried lake beds through permafrost

regions on Earth and Mars, to the three-dimensional structures of coloumnar joints formed in

cooling volcanic lava.

It is a great challange to control the

structure of shrinkage induced two-

dimensional crack patterns also due to

its high importance for technological

applications. Recently, it has been

demonstrated experimentally for dense

calcium carbonate and magnesium

carbonate hydroxide pastes that applying

mechanical excitation by means of vibration or flow of the paste the emerging desiccation

crack pattern remembers the direction of excitation, i.e. main cracks get aligned and their

orientation can be tuned by the direction of mechanical excitation (Fig. 1).

In order to understand the mechanism of this

memory effect, we studied the process of

shrinkage induced cracking by means of

realistic discrete element simulations. In the

model a thin layer is discretized on a random

lattice of Voronoi polygons attached to a

substrate. To represent the mechanics of the

layer the center of mass of neighbouring

polygons are connected by breakable beam

elements. In order to capture the adhesion of

the layer to the substrate material the

polygons are coupled to underlaying plane

by initially stress free spring elements. To

capture the effect of shrinking in the model

the natural length of beams is gradually

decreased as a function of time. As the

system evolves, this shrinkage gives rise to a

homogeneous deformation field, where

overstressed beams break creating cracks in

the layer. We impose a breaking rule which

can reflect the fact that the longer and

thinner beams are easier to break,
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This breaking criterion is evaluated at each iteration step and those beams which

fulfill the condition are removed from the simulations.

The value of the breaking parameters 𝜀𝑡ℎ
and 𝜃𝑡ℎ control the relative importance of

the stretching and bending modes of

breaking. We assume that the plastic

deformation imprinted by the initial

mechanical excitation in pastes introduces a

directional dependence of the fracture

strength of the solidifying paste. In order to

capture this effect in the model, the breaking

thresholds do not have any randomness,

however, we assume that they depend on the

orientation angle 𝛼 of the beam with respect

to the horizontal axis, which represents e.g.

the direction of shaking in the initial

configuration.

Fig. 3. Angular dependence of the breaking

parameters 𝜺𝒕𝒉 and 𝜽𝒕𝒉 . The angle 𝜶 is

measured from the horizontal axis.

For simplicity, we implemented the functional forms

𝜀𝑡ℎ 𝛼 = 𝜀𝑡ℎ
0 1 + 𝑎 cos 𝛼 ,

𝜃𝑡ℎ 𝛼 = 𝜃𝑡ℎ
0 1 + 𝑎 cos 𝛼 ,

where the orientation angle 𝛼 takes values in the range 0 ≤ 𝛼 ≤ 𝜋/2 (Fig. 3).

Breaking mechanism

Fig. 5. Time evolution of the cracking thin layer

in the presence of anisotropy a=1.0. Snapshots

are presented at different values of the fraction

of broken fibers d: (a) 0.06, (b) 0.14, (c) 0.22 and

(d) 0.30.

Hence, for zero anisotropy 𝑎 = 0.0 of the breaking thresholds, representing the absence of

initial mechanical excitation in experiments, a cellular crack pattern is expected with a high

degree of isotropy of the crack orientation. This is illustrated in Fig. 4 where snapshots of the

evolution of the crack pattern are shown at 𝑎 = 0.0 for 4 different values of hte damage

parameter d. Main outcomes of the study of the isotropic case of unperturbed, homogeneous

layers:

• Before bond breaking sets on the shrinkage of beams generates a nearly uniform stress

field.

• The first microcracks nucleate at random positions and gradually grow (Fig. 4(a-b)).

• Fragments are formed when the entire crack network becomes connected, which occurs

between Fig. 4(c) and (d).

• Further shrinking results in crack formation typically in the middle of the fragments

which breaks them into two pieces gradually reducing their size.

Simulations revelaed that the presence of

anisotropy 𝑎 > 0 has a strong effect both on

the initiation and propagation of cracks,

which in turn shows up also in the structure

of the crack pattern and in the geometrical

features of fragments. This is demonstrated

by Fig. 5 for the case of 𝑎 = 1.0 presenting

4 snapshots of the evolution at different

stages d of the fracture process. Due to the

directional dependence of the local strength,

in the initial phase of the fracture process

those beams break which have a higher

angle 𝛼 ≈ 𝜋/2 with the horizontal

direction. Removal of beams create

microcracks along the side of polygons,

which are nearly perpendicular to the beam

direction. As a consequence, the primary

cracks grow mainly along the horizontal

direction as it can be observed in Fig. 5(a).

As the strain increases in the layer with

shrinking, stronger beams at a lowe angle

with the horizontal direction start also to break creating cracks even along the vertical direction

in Fig. 5(b). When the fully connected crack network appears, the strong alignment of cracks

results in a pronounced anisotropy of the emerging fragments (Fig. 5(c)).

Fig. 6. The average value of the shrinkage strain 𝜺𝒄 where the

first crack nucleate in the layer scaled with the breaking

parameter 𝜺𝒕𝒉
𝟎 as a function of the degree of anisotropy.

To charactize how crack initiation is affacted by the presence

of anisotropy, we determined the average value 𝜀𝑐 of the

shrinkage strain 𝜀𝑖𝑛 where the first microcrack nucleate in the

system. The good quality straight line observed in the inset of

Fig. 6 confirms that the crack initiation strain has a power law

dependence on the degree of anisotropy 𝜀𝑖𝑛 = 𝜀𝑖𝑛
∗ + 𝐵𝑎𝛽.

Macrocracks are characterized by their orientation,

which is determined as the angle 𝜃 between the

axis 𝑥 and the straight line connecting the two end

junctions of the crack. The probability distribution

𝑝(𝜃) of the orientation angle 𝜃 is presented in Fig.

8(a) for an anisotropic system 𝑎 = 3.0 at several

values of the damage fraction 𝑑 . Angular

distributions obtained at different degrees of

anisotropy 𝑎 are compared in the inset of Fig. 8(a)

at the same value of the damage fraction 𝑑 = 0.17
at an early stage of breakup. The strong effect of

anisotropy on the crack orientation is evident, i.e.

the distribution is nearly uniform for the case of

isotropy 𝑎 = 0.0, however, increasing 𝑎 suppresses

Fig. 8. (a) Probability distribution 𝒑(𝜽) of the orientation angle 𝜽 of macrocracks at the

anisotropy 𝒂 = 𝟑. 𝟎 for several values of the damage fraction 𝒅. Inset: the distribution 𝒑(𝜽) for

several degrees of anisotropy obtained at the same damage fraction 𝒅 = 𝟎. 𝟏𝟕. (b) Increments of

the number of cracks of different directions as function of the damage fraction 𝒅 at different

anisotropies.

(a) (b)

Fig. 9. Average mass of fragments as a

function of the damage fraction for several

values of the anisotropy parameter.

in the layer at this 𝑑 value. We determined the increments of the number of cracks of different

directions (Fig. 8(b)). We found that anisotropy 𝑎 > 0 results in a clear separation of the

increments for low 𝑑. To give a quantitative charazterization of the emergence of a connected

crack network, we determined average mass of fragments (Fig. 9).

cracks at large angles, e.g. in case of 𝑎 = 3.0

Fig. 10. The three phases of desiccation induced cracking

on the damage-anisotropy parameter plane.
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Based on the analysis of the crack orientation and of the overall structure of the emerging crack

network we conclude that the evolution of the crack

pattern has essentially three phases: (I) Primary cracking

is dominated by the formation of long cracks aligned

with a direction impronted by the initial mechanical

excitation. (II) Secondary cracking sets on when cracks

even perpendicular with the primary ones are generated.

As desiccation proceeds, primary and secondary cracks

merge which leads to (III) the emergence of connected

network of cracks (see Fig. 10)

Fig. 11. The average aspect ratio 𝑳𝒚/𝑳𝒙
of fragments as a function of the damage

fraction 𝒅 for several anisotropies 𝒂. Note

that the asymptotic value of the aspect

ratio decreases with 𝒂.

Fig. 12. Scaling plot of the mass distributions 𝒑(𝒎, 𝒅) of

fragments at four different anisotropies: (a) 𝒂 = 𝟎. 𝟎, (b)

𝒂 = 𝟎. 𝟓, (c) 𝒂 = 𝟏. 𝟎 and (d) 𝒂 = 𝟐. 𝟎.

The emergence of the connected crack network

which spans the entire system has the

consequence that layer breaks up into large

number of fragments. We have seen that the

structure of the crack network strongly depends

on the degree of anisotropy, hence, it can be

expected that anisotropy affects also the

evolution of the fragmentation process. The long

straight cracks of primary cracking create

elongated slices in the layer, which are then

segmented by the secondary cracks into smaller

pieces. This mechanism results in fragments

whose elongated shape originates from the

structure of the connected crack network. To

characterize the shape of fragments we

determined the bounding box of individual pieces

with side length 𝐿𝑥 and 𝐿𝑦 directed along the 𝑥

and 𝑦 axis of the initial coordinate system,

respectively. It can be observed in Fig. 11 that in

the absence of initial anisotropy 𝑎 = 0.0 ,

fragments have an isotropic shape 𝐿𝑦/𝐿𝑥 ≈ 1
at any damage state. However, anisotropy 𝑎 > 0 of the local materials’ strength gives rise to

an elongated fragment shape.

The mass distributions 𝑝(𝑚, 𝑑)
of fragments obtained at

different damages 𝑑 have a

robust functional form (Fig. 12).

Rescaling the mass distributions

by the average fragment mass,

the 𝑝(𝑚) curves of different 𝑑
can be collapsed on a master

curve. The data collapse implies

the scaling structure of the

distributions,

𝑝 𝑚, 𝑑 = 𝑚 −1ψ 𝑚/ 𝑚 .
The scaling function ψ(𝑥) can be

very well described by the log-

normal distribution

ψ 𝑥 =
1

𝑥𝜎 2𝜋
𝑒𝑥𝑝 − ln 𝑥 − 𝜇 2/2𝜎2


