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Introduction

We propose a new flexible method of calculating conformational entropy of
lattice polymer and random walk models and apply it to reconstruct phase diagram
of a novel model of non-Markovian discrete random walk on a three-dimensional
lattice, which we call volume and surface reinforced random walk.

Random Walk with Volume and Surface Reinforcement

Consider a random walk on some graph G defined by its sets of vertices and
edges G = (V,E). Let VN be a set of vertices visited up to step N of the walk, and
vN – the position of the walker at step N . For each site vi , which is neighbor of vN,
define a weight

w(vi) = I (eN ,i ∈ E)×


exp a, if vi ∈ VN;
1, if vi 6∈ VN and vN is the only

neighbor of vi from VN;
exp b, if vi 6∈ VN and there are

other neighbors of vi in VN,

(1)

where eN ,i denotes the edge connecting vN and vi , and I is the indicator function.
Now the probability of a walker going from vN to vi on step N + 1 is proportional to
w(vi):

P(vN+1 = vi) =
w(vi)∑
k w(vk)

(2)

This model has two parameters: a (volume reinforcement) and b (surface
reinforcement). Case of b = 0 was earlier discussed in [1, 2]. Our goal is to
estimate conformational entropy of the model trajectories for G = Z3.

Method of conformational entropy estimation

The method approximates the full-dimensional probability density function over
all possible conformations by deep autoregressive generative model resembling the
conditional PixelCNN [3]. The joint distribution p(x |θ) of a trajectory x
conditioned on a vector θ of macroscopic parameters is expanded as

p(x |θ) =

len(x)∏
i=1

p(xi|x<i , θ), (3)

where conditional distributions are modelled by a 3d fully convolutional neural
network with locally masked weights.

We present an adaptive masking mechanism which takes into account sequential
nature of the trajectory generation process and allows to define sparse
three-dimensional generalization of conditional PixelCNN capable of computing all
conditional distributions in a single forward pass. The network then is trained on
the ensemble of trajectories generated for different macroscopic parameters using
maximum likelihood estimation. Given a trained network we compute
conformational entropy by averaging negative log-likelihood over ensemble of
trajectories generated at fixed values of macroscopic parameters

S(θ) = −Ex log p(x |θ). (4)

Adaptive masking mechanism

Figure: 1. Illustration of adaptive masking in 2d case. (a) Trajectory of a random walk, (b-f) Local
trajectory-defined masks. Blue represents value of zero, and green represents one.

Adaptive masking generalizes the idea of locally masked convolutions proposed in
[7] to the case of arbitrary orderings of voxels in 3d image. Since conditional
probabilities in (4) should depend only on the previous points of trajectory, weights
of 3d convolutional layers should be multiplied by a tensor with 0s for all trajectory
points with the order larger or equal than the order of the current point. Points
which are not part of the trajectory are also masked with zeros. Local masks in case
of a 2d trajectory are illustrated by Fig. 1. Masks of this type are used only for the
first convolutional layer. For second and further layers we remove the mask from
the point itself and mask only the points of trajectory, which have the order strictly
larger than that of the current point. For every point in a trajectory output layer
returns positive real number representing probability of this point being added to
the trajectory.

To scale up to larger trajectories instead of ordinary 3d convolutional layers we
apply submanifold sparse convolutional layers [8] and store in memory only
trajectory points and their neighbourhood.

Source code is avalible at github.

Characterization of Phases

I Phase (a) is a simple Brownian motion and has highest conformational en-
tropy.

I In phase (b) the walk is mostly sticking to the surface of the already visited
region, without either penetrating it or going away. As a result, visited volume
grows, at least approximately, proportionally to the number of steps but the
visited area forms a rather irregularly shaped blob with a very developed
surface, which is reminiscent of the shapes of polymer rings in a melt [4, 5].

I Phase (d) is the phase of supercollapsed ball first predicted in [6] and well-
studied in the volume-reinforced (b = 0) case [1, 2]. The visited region of
the walk is in this case asymptotically a smooth ball with radius growing as
N1/4 with growing number of steps.

I Phase (c) is similar to phase d but for the fact that the supercollapsed ball
in this case has a rough surface and is porous. As a result, the surface and
the volume of the ball are growing as N2σ and N3ν, respectively, with σ > ν.

Figure: 2. Right: Examples of representative trajectories of the 5 phases of the model. Left: Plot of
conformational entropy in bits-per-voxel estimated by 3d PixelCNN with adaptive masking.

I To understand phase (e) note that on the a, b � 1 limit it is beneficial for
the visited volume to have extended flat faces, which grow without defects
up to the area of order eb. As a result, crystalline-like objects are formed.
Clearly, for any given a, b they are unstable in the N → ∞ limit, but the
length of the walk needed for the defects to destroy this crystalline structure
is exponentially large. However, the existence of this phase is a peculiarity
of the simple cubic lattice, which is conducive to the flat face formation.
We checked that phase diagram of a similar walk on body-centered cubic
lattice does not include this phase. Instead, there is a direct transition from
crumpled-globule-like phase (b) to supercondensed ball phase (d)
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