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The Hybrid Potts (HP) model

Consider a Po s Hamiltonian H({σ}) where {σ} is a configura on of N spins, each can select one

out of {1, 2, ..., Qi} colors where

Qi = −Xi(q − q0) + q, i = 1, ..., N , (1)

and Xi ∼ Ber(p) are i.i.d. random variables.

Let qc be the maximal integer for which the transi on is con nuous. Each spin can be colored by

q0 ≤ qc “strong” colors with probability p and by q > qc colors (containing q − q0 addi onal “weak”

colors), with probability 1 − p.

Spins chosen with probability p or 1 − p, belong to strong or weak regions, respec vely.

Main result

There is a marginal concentra on p∗ such that the transi on is is discon nuous for

p < p∗ and con nuous for p ≥ p∗.

The standard HPmodel

Simple clusters, growing sub-exponen ally with their size, have a minimal number of sites per bond,

i.e., 1/2 + o(1).
Fractals have 1/2 + δ + o(1) (δ ≤ 1/2) sites per bond. Let #(k, n) be the number of fractals with n
sites such that k of them are posi oned in strong regions. The expected number of such fractals is

〈#(k, n)〉 = µn
(

n

k

)
pk(1 − p)n−k , (2)

where
∑

k #(k, n) ∼ µn and µ ≡ µ(δ) is the growth constant of those fractals [1].

The expected change in the number of states is given by 〈#(k, n)〉q−k
0 q−(n−k).

Assuming that #(k, n) is narrowly distributed around its mean, the free energy per site can be

wri en as

− βffrac = 2β

1 + 2δ
+ ln µ − ln q +

∑
k

(
1
n

ln
((

n

k

)
pk(1 − p)n−k

)
+ k

n
ln
(

q

q0

))
. (3)

In the large n limit, the sum in (3) can be replaced with the maximum of the summand obtained at k
sa sfying

κ = pq

pq + (1 − p)q0
, (4)

with κ = k/n. This brings (3) into the form

− βffrac = 2β

1 + 2δ
+ ln µ − ln q (5)

− κ ln κ − (1 − κ) ln(1 − κ) + κ ln p + (1 − κ) ln(1 − p) + κ ln
(

q

q0

)
.

The free energy per site of simple clusters is given by

− βfsim = 2β − p ln q0 − (1 − p) ln q . (6)

If at β solving fsim = 0 we have ffrac ≥ 0, then it is disadvantageous for the system to occupy fractals

at that temperature =⇒ first order transi on at

βc ≈ 1
2

(p ln q0 + (1 − p) ln q) . (7)

The concentra on p∗ is es mated by taking κ∗ to sa sfy (4) at p∗, plugging it into (5) together with

the RHS of (7) and solving

The standard HPmodel

sup
δ

(
p∗ ln q0 + (1 − p∗) ln q + (1 + 2δ) ×

(
ln µ − ln q − κ∗ ln κ∗ − (1 − κ∗) ln(1 − κ∗)

+κ∗ ln p∗ + (1 − κ∗) ln(1 − p∗) + κ∗ ln(q/q0)
))

= 0 , (8)

for p∗.

The large q behavior is then given by

p∗ ∼ ln q

q
. (9)
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Figure 1. Energy PDF for the standard model with spin numbers q0 = 2 and q = 50. The la ce linear size is L = 40. The
concentra on p∗ is expected to be 0.05 ≤ p∗ < 0.15, in reasonable agreement with (9) yielding ln 50

50 ' 0.08.

The mean field (MF) HPmodel

The MF Hamiltonian is given by

HMF = − 1
N

∑
i<j

δσi,σj . (10)

Let ξi and ηi be the frac on of spins with color i ∈ {0, 1, ..., q0 − 1, ..., q − 1}, in strong and weak

regions, respec vely. The number of states with energy E(ξ, η, p) = −1
2N
∑

i(pξi + (1 − p)ηi)2 is

Ω(ξ, η, p) =
(

pN

pNξ0, ..., pNξq−1

)(
(1 − p)N

(1 − p)Nη0, ..., (1 − p)Nηq−1

)
. (11)

Introducing the Lagrange mul pliers a, b, the free energy per site reads

βf =
∑

i

(
pξi ln ξi + (1 − p)ηi ln ηi − 1

2
β(pξi + (1 − p)ηi)2

)
+ a
(∑

i

ξi − 1
)

+ b
(∑

i

ηi − 1
)

.

(12)

The quan es ξ, η can take the form

ξj =


1
q0

(1 + (q0 − 1)m0) , j = 0
1
q0

(1 − m0) , j = 1, ..., q0 − 1
0 , j = q0, ..., q − 1 ,

(13)

and

The HPmean field model

ηj =


1
q(1 + (q0 − 1)m0)(1 + (q/q0 − 1)m1) , j = 0
1
q(1 − m0)(1 + (q/q0 − 1)m1) , j = 1, ..., q0 − 1
1
q (1 − m1) , j = q0, ..., q − 1 ,

(14)

where m0, m1 are the components of a two-fold magne za on m.

Con nuous transi on: the magne za on at the cri cal point, m∗, must sa sfy ∇f = (g0, g1) = 0 (it

can be shown that g0 = 0 at m∗
0 = 0). The cri cal temperature is obtained by the further condi on

that the Hessian matrix H(m, β, p, q) computed at m∗ sa sfying m∗
0 = 0, g1(m∗, βc, p, q) = 0, obeys

det H(m∗(βc, p, q), βc, p, q) = 0 . (15)

Eq. (15) implicitly determines the second order cri cal line (for q fixed) in concentra on-temperature

parameter space
1
2

exp
(

βc − q

q − 2

)
= βc − 2

(q − 2)(2 − βcp)
. (16)

The cri cal magne za on reads

m∗ =
(

0,
q(2 − βcp)

βc(1 − p)(q − 2)
− 2

q − 2

)
. (17)

The cri cal energy is given by

εc = −(βc − 4)βc + 2q

2β2
c (q − 2)

. (18)
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(a) “Strong” magne za on component m0 as a func on of

temperature, for different concentra ons. It should be

noted that the symbols composing the graphs for p ≥ 0.4
are more dense than for p ≤ 0.2, in some neighborhood of

T0, where T0 is the point where the numerical deriva ve
∆m0
∆T is “large” .
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(b) Magne za on versus MC me for a system with

N = 1000 spins. (a) p = 0.1 and T = 0.2661. (b) p = 0.6 and

T = 0.4199 (Tc = β−1
c = 0.409(8) according to (16)). Energy,

ε, against MC me is plo ed in the inset. The energy

fluctuates around 〈ε〉 = −0.178(9) (c.f. εc = −0.172(0) due
to (18).

Figure 2. Analy cal and simulated quan es for the MF HP model with spin numbers q0 = 2, q = 6. (a) Magne za on

component m0 minimizing (12) and (b) observables (Simulated magnetization = pq0z0−1
q0−1 + (1 − p)qz−1

q−1 where z0 and z are the

maximal frac ons of monochroma c spins in strong and weak loca ons, respec vely) computed using the Metropolis

method.
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