Changeover phenomenon in randomly colored Potts model
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The Hybrid Potts (HP) model

= Consider a Potts Hamiltonian H({c}) where {c} is a configuration of N spins, each can select one
out of {1,2,...,Q;} colors where

Qi=-Xilg—q)+q, i=1,...,N, (1)
and X; ~ Ber(p) are i.i.d. random variables.

= Let ¢, be the maximal integer for which the transition is continuous. Each spin can be colored by
q0 < q. ‘strong” colors with probability p and by ¢ > g. colors (containing ¢ — ¢g additional “weak”
colors), with probability 1 — p.

= Spins chosen with probability p or 1 — p, belong to strong or weak regions, respectively.

Main result

The standard HP model

There is a marginal concentration p* such that the transition is Is discontinuous for
p < p* and continuous for p > p*.

The standard HP model

= Simple clusters, growing sub-exponentially with their size, have a minimal number of sites per bond,
.e., 1/24o(1).

= Fractals have 1/2 + 6 + o(1) (6 < 1/2) sites per bond. Let #(k, n) be the number of fractals with n
sites such that k£ of them are positioned in strong regions. The expected number of such fractals is

k) = ()= 2
where > . #(k,n) ~ p™ and p = p(6) is the growth constant of those fractals [1].
—k_—(n—k)

* The expected change in the number of states is given by (#(k,n))q, "q .

= Assuming that #(k, n) is narrowly distributed around its mean, the free energy per site can be
written as

23 1 n n— k. (4
— Bfac = erln,u—lanrzk: (5111 ((k>pk(1 - p) k) +~In (%>> . (3)

= |n the large n limit, the sum in (3) can be replaced with the maximum of the summand obtained at &
satistying

pq
K= : (4)
pq + (1 —p)qo
with k = k/n. This brings (3) into the form
25
— O ftrac = 1_|_25+1n,u_1nq (5)
— klnk—(1—k)In(l — k) +rlnp+ (1 —£K)In(l —p)+kln (qi) .
0

= The free energy per site of simple clusters is given by

— Bfsim =26 —plngy— (1 —p)Ing. (6

= |f at 8 solving fsim = 0 we have fr.,. > 0, then it is disadvantageous for the system to occupy fractals
at that temperature = first order transition at

S~—"

@:%%(plnqoﬂl—p)ln@ : (7)

= The concentration p* is estimated by taking x* to satisfy (4) at p*, plugging it into (5) together with
the RHS of (7) and solving

sup (p*lnqo—l— (1—p")Ing+ (14 29) x (ln,u—lnq— K'Ink" — (1 — k") In(l — k)

)
+£*Inp* + (1 — ") In(1l — p*) + &* ln(q/qo))> =0, (8)
for p*.
= The large q behavior is then given by
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Figure 1. Energy PDF for the standard model with spin numbers gy = 2 and ¢ = 50. The lattice linear size is L = 40. The
concentration p* is expected to be 0.05 < p* < 0.15, in reasonable agreement with (2) yielding 220 ~ (.08.

The mean field (MF) HP model

= The MF Hamiltonian is given by

1
HMF — _NzéJi,Uj . (10)
1<
= Let & and n; be the fraction of spins with colori € {0,1,...,q0 — 1, ..., — 1}, in strong and weak
regions, respectively. The number of states with energy E(&,n,p) = —%N > &+ (1 — pIn;)? is
pN (1—p)N
( K ) prOa--prfq—l (1_p)N77077(1_p>N77q—1
= Introducing the Lagrange multipliers a, b, the free energy per site reads
1
Bf = (pﬁz Ing; + (1= p)minn; — SH(p& + (1 —p)m)Q) + G(Z&' — 1) + b(Zm — 1) -
(12)
= The quantities &, can take the form
f .
= (1+ (g0 — Dmg) ,j =
&= (1 —mo) =1 —1 (13)
\O 7jZQO7”'7q_17

The HP mean field model
(14 (g0 — Dmo)(1 + (¢/g0 — Dmy) ,j =0
10 = é(l—mo>(1+(Q/qo—1)m1> J=1..,9—1 (14)
é(l-’ﬁll) 7jZQO7°"7q_17

where mg, m1 are the components of a two-fold magnetization m.

= Continuous transition: the magnetization at the critical point, m*, must satisfy V.f = (gg, g1) = 0 (it
can be shown that gp = 0 at m{ = 0). The critical temperature is obtained by the further condition
that the Hessian matrix H(m, 3, p, ¢) computed at m™ satisfying mj = 0, g1(m™, B¢, p, q¢) = 0, obeys

det H(m™ (B¢, p,q), Be, p,q) =0 . (15)

= Eq. (15) implicitly determines the second order critical line (for ¢ fixed) in concentration-temperature
parameter space

1 — — 2
—exp <ﬁC Q> _ BC . (16)
2 q—2 (¢ —2)(2 = Bep)
= The critical magnetization reads
2 — 2
m* — <0, Q( ﬁcp> B _) | (17)
Be(l=p)g—2) q—2
= The critical energy is given by
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(a) “Strong” magnetization component myq as a function of 0 0.5 MO Ste1s 1.5 42
temperature, for different concentrations. It should be P x10

noted that the symbols composing the graphs for p > 0.4  (b) Magnetization versus MC time for a system with
are more dense than for p < 0.2, in some neighborhood of N = 1000 spins. (a) p = 0.1 and T' = 0.2661. (b) p = 0.6 and

Ty, where T}, is the point where the numerical derivative T = 0.4199 (T. = 3. = 0.409(8) according to (16)). Energy,
amo js “|arge” . e, against MC time is plotted in the inset. The energy

> fluctuates around (g) = —0.178(9) (c.f. e. = —0.172(0) due
to (18).

Figure 2. Analytical and simulated quantities for the MF HP model with spin numbers ¢y = 2, ¢ = 6. (a) Magnetization

component mgo minimizing (12) and (b) observables (Simulated magnetization = p%o__ll +(1— p)qqz_—ll where z, and z are the

maximal fractions of monochromatic spins in strong and weak locations, respectively) computed using the Metropolis
method.
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