The Hybrid Potts (HP) model

- Consider a Potts-Hamiltonian \(H(p,q) \) where \(p \) is a configuration of \(N \) spins, each can select one out of \(\{1,2,\ldots,Q\} \) colors where \(Q_i = -X_i(q_i - q_0) + q_i \).

\[
\sum_{i=1}^{N} Q_i = \sum_{i=1}^{N} -X_i(q_i - q_0) + q_i = \cdots
\]

and \(X_i \) are i.i.d. random variables.

- Let \(q_i \) be the maximal integer for which the transition is continuous. Each spin can be colored by \(q_i \leq q \) colors (containing \(q_i - q_0 \) additional "weak" colors), with probability \(1 - p \).

- Spins colored with probability \(p = 1 - q_0 \) belong to strong or weak regions, respectively.

The standard HP model

- Simple clusters, growing sub-exponentially with their size, have a minimal number of sites per bond. The expected number of such fractals is

\[
\frac{1}{q}(q_i) = \mu
\]

for \(q \leq p \).

- The large \(q \) behavior is then given by

\[
p = \frac{\ln q}{q}
\]

for \(q > p \).

The Hybrid HP model

- The free energy per site of simple clusters is given by

\[
\beta f = \frac{1}{\ln q} \ln q + (1 - p)\ln q + (1 + 2q) \times \left(\ln q - \ln q - n^* \ln n^* - (1 - n^*) \ln(1 - n^*) \right)
\]

\[
+ n^* \ln p^* + (1 - n^*) \ln(1 - p^*) + n^* \ln(q/q_0) = 0
\]

for \(p^* \).

- The large \(q \) behavior is then given by

\[
p^* = \frac{\ln q}{q}
\]

for \(q > p^* \).

The standard HP model

- Simple clusters, growing sub-exponentially with their size, have a minimal number of sites per bond, i.e., \(1/2 + x/\omega \) \((0 \leq x < 1) \) sites per bond. Let \(\psi(x, \omega) \) be the number of fractals with \(n \) sites such that \(k \) of them are positioned in strong regions. The expected number of such fractals is

\[
\langle n \rangle = \psi^*(n) = \psi(n) \left(\frac{\beta f}{2} \right)^{1-\frac{1}{\beta f}}
\]

where \(\sum_n \psi(n) \approx 1 \) and\(\mu = \psi^*(1) \) is the growth constant of those fractals [1].

- The expected change in the number of states is given by \(\psi(x, \omega) \psi^{-1} = \omega + x \). The free energy per site can be written as

\[
- \beta f_{\text{free}} = \beta f_{\text{free}} + \ln q - \frac{1}{q}(q_i) + \ln n_i
\]

- In the large \(n \) limit, the sum in \((3) \) can be replaced with the maximum of the summand obtained at \(k \) satisfying

\[
\frac{\psi(x, \omega)}{\psi^*(1)} \leq \omega + x
\]

\[
(4)
\]

The mean-field (MF) model

- The MF Hamiltonian is given by

\[
H_{\text{MF}} = -\frac{1}{q}(q_i) - \frac{1}{\psi(x, \omega)} \psi(x, \omega)
\]

(10)

- Let \(\xi_i \) and \(\eta_i \) be the fraction of spins with color \(i \) \(\{1,2,\ldots,q\} \) in strong and weak regions, respectively. The number of states with energy \(E(\xi, \eta, q) \) is

\[
\Omega(\xi, \eta, q) = \frac{N!}{\left(\sum_{i=1}^{q} N_i! \right)}
\]

(11)

- Introducing the Lagrange multipliers \(\xi \) and \(\eta \), the free energy per site rate equals

\[
\frac{\beta f}{\lambda} = \sum_{i=1}^{q} \left(\xi_i + (1 - \psi(x, \omega)) \psi_i - \eta_i \right) + \frac{\lambda}{q} \sum_{i=1}^{q} \left(\xi_i \right) - 1 + \lambda \left(\eta_i - \eta \right)
\]

(12)

- The quantities \(\xi_i, \eta_i \) can take the form

\[
\xi_i = \frac{1}{q}(q_i - q_0) \quad \eta_i = \frac{1}{q}(q_i - q_0)
\]

(13)

Main result

There is a marginal concentration \(p^* \) such that the transition is discontiguous for \(p < p^* \) and continuous for \(p > p^* \).

References