

The Hybrid Potts (HP) model

• Consider a Potts Hamiltonian $\mathcal{H}(\{\sigma\})$ where $\{\sigma\}$ is a configuration of N spins, each can select one out of $\{1, 2, ..., Q_i\}$ colors where

$$Q_i = -X_i(q-q_0) + q, \ i = 1, ..., N$$
,

and $X_i \sim \text{Ber}(p)$ are *i.i.d.* random variables.

- Let q_c be the maximal integer for which the transition is continuous. Each spin ca $q_0 \leq q_c$ "strong" colors with probability p and by $q > q_c$ colors (containing $q - q_0$ colors), with probability 1-p.
- Spins chosen with probability p or 1 p, belong to strong or weak regions, respectively.

Main result

There is a marginal concentration p^* such that the transition is is discontinuous for $p < p^*$ and continuous for $p \ge p^*$.

The standard HP model

- *Simple* clusters, growing sub-exponentially with their size, have a minimal number of sites per bond, i.e., 1/2 + o(1).
- Fractals have $1/2 + \delta + o(1)$ ($\delta \le 1/2$) sites per bond. Let #(k, n) be the number of fractals with n sites such that k of them are positioned in strong regions. The expected number of such fractals is

$$\langle \#(k,n) \rangle = \mu^n \binom{n}{k} p^k (1-p)^{n-k} ,$$

where $\sum_k \#(k,n) \sim \mu^n$ and $\mu \equiv \mu(\delta)$ is the growth constant of those fractals [1]

- The expected change in the number of states is given by $\langle \#(k,n) \rangle q_0^{-k} q^{-(n-k)}$.
- Assuming that #(k,n) is narrowly distributed around its mean, the free energy per site can be written as

$$-\beta f_{\text{frac}} = \frac{2\beta}{1+2\delta} + \ln\mu - \ln q + \sum_{k} \left(\frac{1}{n} \ln\left(\binom{n}{k} p^k (1-p)^{n-k}\right) + \frac{k}{n} \ln\left(\frac{q}{q_0}\right) \right).$$
(3)

• In the large n limit, the sum in (3) can be replaced with the maximum of the summand obtained at ksatisfying

$$c = \frac{pq}{pq + (1-p)q_0} ,$$

with $\kappa = k/n$. This brings (3) into the form

$$-\beta f_{\text{frac}} = \frac{2\beta}{1+2\delta} + \ln \mu - \ln q$$
$$-\kappa \ln \kappa - (1-\kappa) \ln(1-\kappa) + \kappa \ln p + (1-\kappa) \ln(1-p) + \kappa \ln \left(\frac{q}{q_0}\right)$$

The free energy per site of simple clusters is given by

$$-\beta f_{\rm sim} = 2\beta - p \ln q_0 - (1-p) \ln q$$
.

• If at β solving $f_{sim} = 0$ we have $f_{frac} \ge 0$, then it is disadvantageous for the system at that temperature \implies first order transition at

$$\beta_c \approx \frac{1}{2} \left(p \ln q_0 + (1-p) \ln q \right) \;.$$

• The concentration p^* is estimated by taking κ^* to satisfy (4) at p^* , plugging it into (5) together with the RHS of (7) and solving

Changeover phenomenon in randomly colored Potts model

Nir Schreiber¹

¹Bar Ilan University

The standard HP model

$$\sup_{\delta} \left(p^* \ln q_0 + (1 - p^*) \ln q + (1 + 2\delta) \times \left(\ln \mu - \ln q + \kappa^* \ln p^* + (1 - \kappa^*) \ln (1 - p^*) + \kappa^* \ln (q/q_0) \right) \right) = 0$$

for
$$p^*$$
.

(1)

• The large q behavior is then given by

$$p^* \sim \frac{\ln q}{q}$$
.

Figure 1. Energy PDF for the standard model with spin numbers $q_0 = 2$ and q = 50. The lattice linear size is L = 40. The concentration p^* is expected to be $0.05 \le p^* < 0.15$, in reasonable agreement with (9) yielding $\frac{\ln 50}{50} \simeq 0.08$.

The mean field (MF) HP model

The MF Hamiltonian is given by

$$\mathcal{H}_{MF} = -\frac{1}{N} \sum_{i < j} \delta_{\sigma_i, \sigma_j} . \tag{10}$$

• Let ξ_i and η_i be the regions, respectivel

e fraction of spins with color
$$i \in \{0, 1, ..., q_0 - 1, ..., q - 1\}$$
, in strong and weak
ly. The number of states with energy $E(\boldsymbol{\xi}, \boldsymbol{\eta}, p) = -\frac{1}{2}N \sum_i (p\xi_i + (1-p)\eta_i)^2$ is
 $e(\boldsymbol{\xi}, \boldsymbol{\eta}, p) = {pN \choose pN\xi_0, ..., pN\xi_{q-1}} {(1-p)N \choose (1-p)N\eta_0, ..., (1-p)N\eta_{q-1}}.$ (11)

Introducing the Lagrange multipliers a, b, the free energy per site reads

$$\beta f = \sum_{i} \left(p\xi_{i} \ln \xi_{i} + (1-p)\eta_{i} \ln \eta_{i} - \frac{1}{2}\beta(p\xi_{i} + (1-p)\eta_{i})^{2} \right) + a\left(\sum_{i} \xi_{i} - 1\right) + b\left(\sum_{i} \eta_{i} - 1\right).$$
(12)

• The quantities $\boldsymbol{\xi}, \boldsymbol{\eta}$ can take the form

$$\xi_{j} = \begin{cases} \frac{1}{q_{0}} \left(1 + (q_{0} - 1)m_{0} \right) &, j = 0\\ \frac{1}{q_{0}} \left(1 - m_{0} \right) &, j = 1, \dots, q_{0} - 1\\ 0 &, j = q_{0}, \dots, q - 1 \end{cases}$$
(13)

MECO46, The 46th International Conference of the Middle European Cooperation in Statistical Physics

Reuven Cohen¹ Gideon Amir¹ Simi Haber¹

(8)

(9)

-0.5

$$\eta_{j} = \begin{cases} \frac{1}{q}(1 + (q_{0} - 1)m_{0})(1 + (q/q_{0} - 1)m_{1}) &, j = 0\\ \frac{1}{q}(1 - m_{0})(1 + (q/q_{0} - 1)m_{1}) &, j = 1, ..., q_{0} - 1\\ \frac{1}{q}(1 - m_{1}) &, j = q_{0}, ..., q - 1 \end{cases}$$
(14)

where m_0, m_1 are the components of a two-fold magnetization \boldsymbol{m} .

parameter space

The critical magnetization reads

The critical energy is given by

 T_0 , where T_0 is the point where the numerical derivative $\frac{\Delta m_0}{\Delta T}$ is "large"

Figure 2. Analytical and simulated quantities for the MF HP model with spin numbers $q_0 = 2$, q = 6. (a) Magnetization component m_0 minimizing (12) and (b) observables (Simulated magnetization = $p\frac{q_0z_0-1}{q_0-1} + (1-p)\frac{qz-1}{q-1}$ where z_0 and z are the maximal fractions of monochromatic spins in strong and weak locations, respectively) computed using the Metropolis method

[1] Nir Schreiber, Reuven Cohen, Simi Haber, Gideon Amir, and Baruch Barzel. Unusual changeover in the transition nature of local-interaction potts models. Physical Review E, 100(5), November 2019.

The HP mean field model

• Continuous transition: the magnetization at the critical point, m^* , must satisfy $\nabla f = (g_0, g_1) = 0$ (it can be shown that $g_0 = 0$ at $m_0^* = 0$). The critical temperature is obtained by the further condition that the Hessian matrix $H(\boldsymbol{m},\beta,p,q)$ computed at \boldsymbol{m}^* satisfying $m_0^* = 0, g_1(\boldsymbol{m}^*,\beta_c,p,q) = 0$, obeys $\det H(\boldsymbol{m}^*(\beta_c, p, q), \beta_c, p, q) = 0 .$ (15)

• Eq. (15) implicitly determines the second order critical line (for q fixed) in concentration-temperature

$$o\left(\frac{\beta_c - q}{q - 2}\right) = \frac{\beta_c - 2}{(q - 2)(2 - \beta_c p)} .$$
(16)

$$\left(0, \frac{q(2-\beta_c p)}{\beta_c(1-p)(q-2)} - \frac{2}{q-2}\right) .$$
 (17)

N = 1000 spins. (a) p = 0.1 and T = 0.2661. (b) p = 0.6 and $T = 0.4199 \ (T_c = \beta_c^{-1} = 0.409(8) \text{ according to (16)}).$ Energy, ε , against MC time is plotted in the inset. The energy fluctuates around $\langle \varepsilon \rangle = -0.178(9)$ (c.f. $\varepsilon_c = -0.172(0)$ due to (18).

References