
Aging in the Two-Dimensional Long-Range Ising Model with
Power-Law Interactions

Henrik Christiansena, Suman Majumdera, Malte Henkelb, and Wolfhard Jankea

aInstitut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany
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Abstract

The current understanding of aging phenomena is mainly confined to systems with short-ranged interactions. Little is known about the aging of long-ranged systems. Here we present first
results of Monte Carlo simulations for the aging in the phase-ordering kinetics of the d = 2 dimensional Ising model with power-law long-range interactions ∝ rd+σ. The dynamical scaling
of the two-time spin-spin autocorrelator is shown to be well described by simple aging for all interaction ranges studied. The autocorrelation exponents are consistent with λ = 1.25 in
the effectively short-range regime with σ > 1, while for stronger long-range interactions with σ < 1 the data are consistent with λ = d/2 = 1. For very long-ranged interactions, strong
finite-size effects are observed. We discuss whether such finite-size effects could be misinterpreted phenomenologically as sub-aging.

Model and Phase Ordering Kinetics

The long-range Ising model with power-law decaying potential can be described by the
Hamiltonian

H = −1

2

∑
i

∑
j 6=i

J(rij)sisj and J(rij) =
1

rd+σij

where the spins si = ±1 are placed on a square lattice.
In phase ordering kinetics, starting from a disordered configuration, this system is
then quenched to T < Tc and the ordering of the system is investigated. For this
model, there exists a prediction for the characteristic length during this process [1]:

`(t) ∝ tα =


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1+σ σ < 1

(t ln t)1/2 σ = 1

t
1
2 σ > 1

For σ > 1 one thus sees short-range like be-
havior, for σ < 1 the growth becomes σ de-
pendent. We have shown this for the first
time numerically in Ref. [2].
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Aging

Correlation in time at same position of the local order parameter: C(t, tw) = 〈si(t)si(tw)〉
with t the observation and tw the waiting time, where in equilibrium

C(t, tw) ∼ g(t− tw)

Physical aging has three conditions:

• Slow dynamics

•Loss of time-translational invariance: C(t, tw) 6= g(t− tw)

•Dynamical scaling: C(t, tw) ∼ f (y), with y = t/tw

Asymptotically for t → ∞ one often has: C(t, tw) ∼ y−αλ with the nontrivial aging
exponent λ.
We investigate for the first time aging for the long-range Ising model and observe that all
three conditions necessary for physical aging are fulfilled [3]:
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A fit using ansatz C(ytw, tw) = Ay−αλ(1−B/y) yields λ = 1.243(32) for σ = 1.5 > 1 in
(a), compatible with λ ≈ 1.25 found for the nearest-neighbor model.
For σ = 0.8, we find λ = 1.032(39) in (b), compatible with the rather general lower bound
λ = d/2 [4].

Aging for Small σ

For σ = 0.6, the dynamical scaling is less convincing:

Possible alternative approach for superior data collapse (also used for glassy systems):

Sub-aging with respect to h(t)/h(tw) instead of t/tw, where h(t) = exp
(
t1−µ−1
1−µ

)
with the

limiting behavior h(t) → t for µ → 1

•µ > 1 called super-aging and shown to be impossible [5]

•µ < 1 called sub-aging and observed for example in spin glasses (also experimentally,
e.g., for AgMn) [6]
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Superior impression of data
collapse, BUT with a care-
ful estimation of the onset of
finite-size effects one recov-
ers simple aging and again
finds λ = 0.995(37) ≈ d/2,
compatible with the bound
and the data for σ = 0.8.
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Conclusion

We have performed the first numerical investigation of aging in long-range systems by systematically tuning the interaction range using the two-dimensional long-range Ising model. We
find for all σ simple aging, where for σ = 0.6 it is shown that strong finite-size effects may be misinterpreted as sub-aging. The autocorrelation exponent is consistent with λ = d/2 = 1 for
σ < 1 and with λ = 1.25 for σ > 1. This implies that the transition between the short-range and long-range 2D Ising universality classes occurs at a different value of σ than it does either
at the critical point or else in equilibrium.


