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We discuss possible mechanisms that may impact the order of the transition between denaturated and bounded DNA states and lead to changes in the scaling laws that govern conformational
properties of DNA strands. To this end, we re-consider the Poland-Scheraga model and apply a polymer field theory to calculate entropic exponents associated with the denaturated loop
distribution. For the d = 2 case the latter are deduced from mapping the polymer model onto a two- dimensional random lattice, i.e. in the presence of quantum gravity. For the d = 3 case we get
the corresponding (diverging) ε4 expansions evaluating them by restoring their convergence via the resummation technique.

DNA DENATURATION

In its native state DNA has a form of a helix that consists of two
strands bound together by hydrogen bonds. During biological pro-
cesses involving DNA (such as duplication or transcription) unbinding
occurs, phenomenon known also as denaturation.

The mechanism of such transition may be:

• mechanical (an external pulling force applied to one of DNA
strands),

• chemical (changes in the pH of the DNA contained solvent) or

• thermal (heating of the solvent).
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Fig.1. Model of DNA thermal denaturation we consider in this study. A double stranded
macromolecule with end points V 1 is disattached (‘unzipped’) at points V 3. Resulting

heterogeneous polymer network consists of two double strands V 1− V 3 (bound nucleobases, bold
lines) and a denaturated single-stranded loop V 3− V 3 (unbound nucleobases, thin lines). Partition

function of the loop attains a power-law scaling [1]

Thermal denaturation of DNA
One of important experimental observations of the DNA melting
curves, where the fraction of the bound pairs θ(T ) is measured as a
function of temperature T is their abrupt behaviour. With an increase
of T , θ(T ) manifests a jump at certain transition temperature clearly
signaling that the DNA thermal denaturation is a first order transition.
Numerous theoretical approaches to represent the process of DNA
thermal denaturation in a two-state Ising-like manner were developed.
Here, we concentrate on the Poland-Scheraga type description, where
the transition is governed by an interplay of two factors: chain bind-
ing energy and configurational entropy [2, 3]. In turn, the entropy of
the macromolecule in a good solvent attains a scaling form and this
is how the scaling exponents that govern configurational properties of
polymer macromolecules of different topology (Duplantier, Schäfer)
come into play in descriptions of DNA thermal denaturation.

MODEL AND POLYMER NETWORK

The Poland-Scheraga description relies on a representation of the
partition function Z of a polymer of N segments, each segment being
in two possible states (bound and unbound monomers) through the
loop closure exponent c for a single loop, defined as

Zloop ∼ µ``−c, (1)

For c > 1 the order parameter either continuously vanishes at T = Tc
for 1 < c ≤ 2 or disappears abruptly at T = Tc for c > 2. The
two types of behaviour correspond to the second and first order phase
transitions respectively.

First attempts to define exponent c analytically let to:

• RW-loop: c = d/2 = 1.5 (Poland, Scheraga, 1966)

• SAW-loop: c = dνSAW = 1.76 (Fisher, 1966)

• MC: c > 2, taking into account the interactions between the loop
and the chain (Causo et al., 2000)

• SAW system: c(d = 3) = 2.11 (Kafri et al., 2000; Carlon et al.,
2002)

Let us find the exponent c. In particular, the partition function (num-
ber of configurations) of a copolymer network G (Ferber):

ZG ∼ RηG−F1η2,0−F2η0,2, (2)

ηG = −dL +
∑

f1+f2≥1
nf1,f2ηf1,f2, (3)

Heterogeneity of the network shown in Fig.1 considering mutual
avoidance between all SAWs and RWs leads to four cases:
(i) both chains V1 − V3 and V3 − V3 are SAWs,

ηG = −d + 2ηS12 (4)

(ii) chains V1 − V3 are SAWs, chains V3 − V3 are RWs;

ηG = −d + 2ηU12 (5)

(iii) chains V1 − V3 are RWs, chains V3 − V3 are SAWs;

ηG = −d + 2ηU21 (6)

(iv) all chains V1 − V3 and V3 − V3 are RWs.

ηG = −d + 2ηG12 (7)

When the network is formed by chains of different sizes: R for the
side chains V 1− V 3 and r for the loop V 3− V 3:

ZG ∼ RηG−F1η
U
20f (r/R). (8)

Here f (x) is the scaling function. In the limit r/R → 0 we apply
the short-chain expansion (Ferber): Zchain ∼ Rηchain with ηchain =
ηU02 = 0 for RW and ηchain = ηU20 for SAW. This implies the power-law
asymptotics for the scaling function:

f (x) ∼ xy, with y = ηG − F1ηU20 − ηchain . (9)

With (9) the partition function factorizes as

ZG ∼ Rηchain × ry ∼ ZchainZloop . (10)

Hence the loop closure exponent c:

c = νloop[ηchain − ηG + F1η
U
20] , (11)

and according exponents read:

SAW-SAW-SAW: c1 = νSAW(3ηS20 + d− 2ηS12) , (12)
SAW-RW-SAW: c2 = νRW(ηS20 + d− 2ηU12) , (13)
RW-SAW-RW: c3 = νSAW(2ηS20 + d− 2ηU21) . (14)
RW-RW-RW: c4 = νRW(d− 2ηG21) . (15)

ε-EXPANSION RESUMMATION

Co-polymer star exponents ηf1f2 in scaling relations (12)–(15) have
been calculated by means of field-theoretic renormalization group ap-
proach and are currently available in ε = 4 − d-expansion up to or-
der ε4 (Schulte-Frohlinde). Perturbative renormalization group expan-
sions have zero radious of convergence and are asymptotic at best. We
use the Borel resummation refined by conformal mapping which is
known to be a powerful tool in analysis of ε-expansions. In general,
the method is applied to the function in form of a series expansion:

υ(x) =
∑
n=0

cnx
n, (16)

After Borel sum and conformally mapping the cut plane onto a disk
of radius 1:

x =
4

a

ω

(1− ω)2
, (17)

the procedure is further refined by introducing two additional fit pa-
rameters b and α. The expression for the resummed function reads:

υR(x) =
∑
n

dn(α, a, b)

∫ ∞
0

dt tbe−t
ωn(xt)

(1− ω(t))α
. (18)

Explicit form of the coefficients dn(α, a, b) is found on the base of
known expansion coefficients cn in Eq. (16). In practice, procedure
(18) is applied to the truncated series (16), which is known up to or-
der L. Let us denote the value of the resummed truncated function at
given fixed x by υ(L)R . Ideally, such value (that usually corresponds to
certain physical observable) should not dependent on resummation pa-
rameters α and b. To eliminate such dependence, for each perturbation
theory order L one choses optimal values of α(L)opt, b

(L)
opt which satisfy

condition of minimal sensitivity (Delamotte, Dudka, Mouhanna):

∂υ
(L)
R (b, α)

∂b
|
b
(L)
opt ,α

(L)
opt

=
∂υ

(L)
R (b, α)

∂α
|
b
(L)
opt ,α

(L)
opt

= 0 . (19)

In this way, a set of optimal values (b, α)L is obtained for every per-
turbation theory order L. Out of these points one has to choose those
that ensure the fastest converge by minimizing values:

υ
(L+1)
R (b(L+1), α(L+1))− υ(L)R (b(L), α(L)) . (20)
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Fig.2.Loop closure exponent c for DNA of heterogeneous compositions modeled as sequences of

random and self-avoiding walks in different orders of ε = 4− d expansion at space dimension

d = 3. Solid and dashed lines show resummed (convergent) and non-resummed (divergent) values,

correspondingly. Value c = 2 discriminates between the first (at c ≥ 2 and the second (at 1 ≤ c < 2)

order transition.

RESULTS AND CONCLUSIONS

The above described procedure has been applied to obtain the results
discussed below.

I II III IV
νSAW 0.54(3) 0.56(2) 0.582(8) 0.585(3)
ηS20 -0.25(6) -0.292(4) -0.289 (5) -0.276(3)
ηS12 -0.75(4) -0.77(2) -0.75(1) -0.743(5)
ηU12 -0.75(8) -0.82(5) -0.77(3) -0.795(5)
ηU21 -1.(2) -0.9(8) -0.95(8) -0.98(3)

Table 1: Scaling exponents ν, ηf1f2 obtained at d = 3 by resummation of ε-
expansion in different orders of perturbation theory. [1]

I II III IV
c1 (SAW-SAW-SAW) 2.04 (15) 2.05 (9) 2.12 (4) 2.147 (9)
c2 (SAW-RW-SAW) 2.12 (7) 2.17 (2) 2.16 (1) 2.169 (4)
c3 (RW-SAW-RW) 2.7 (3) 2.8 (1) 2.76 (8) 2.76 (3)
c4 (RW-RW-RW) 2.5 2.5 2.5 2.5

Table 2: Loop closure exponents ci (12)–(15) in different orders of perturbation
theory for different combinations of interacting SAWs and RWs. [1]
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Fig.3. Loop closure exponents ci of the heterogeneous co-polymer network of interacting SAWs and
RWs (as shown in Fig.1) in different orders of the perturbation theory. [1]

Influence of possible heterogeneity in entropic scaling exponents of
bound and denaturated DNA strands on the loop closure exponent c
is manifest by an interplay of two factors. On the one hand, the num-
ber of configurations of a denaturated loop, is influenced by the loop

self-avoidance interactions (the number is larger for the RW loop and
smaller of the SAW one). On the other hand, the number of loop
configurations is restricted by the side chains. Calculations presented
here give a reliable way to judge about the values of exponents ci for
different heterogeneity conditions and hence to judge about the order
of DNA thermal denaturation transition. Our analysis is grounded on
the field theory of co-polymer networks (Ferber). By scaling relations
(12)–(15) we connect loop closure exponents ci to scaling exponents
ηf1f2 that govern entropic properties of co-polymer stars made by
mutually interacting sets of SAWs and RWs. As one can see, the ef-
fects of heterogeneity significantly influence the strength of the first
order transition (the exponent c increases in comparison to the usual
homogeneous SAW case).
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Kenna.

[1] Yu. Honchar, C. von Ferber, Yu. Holovatch, Physica A 573 (2021)
125917

[2] D. Poland, H.A. Sheraga, J. Chem. Phys 45 (1966) 1456.

[3] D. Poland, H.A. Sheraga, J. Chem. Phys. 45 (1966) 1464.


