# DISCONTINUOUS QUANTUM AND CLASSICAL MAGNETIC RESPONSE OF THE PENTAKIS DODECAHEDRON 

N. P. Konstantinidis

The American University of Iraq in Sulaimani, Kurdistan Region, Iraq
cond-mat/2101.06739

## MOTIVATION

$\rightarrow$ Fullerene molecules: 12 pentagons and ( $\mathrm{n} / 2$ ) - 10 hexagons.
$\rightarrow$ Edge-sharing polygons.
$\rightarrow$ Frustration (pentagons)
$\rightarrow$ classical magnetization and susceptibility discontinuities.
$\rightarrow$ quantum magnetization discontinuities ( $l_{\mathrm{h}}$ symmetry).
$\rightarrow$ singlets inside the singlet-triplet gap.

## MOTIVATION

$\rightarrow$ Icosahedron: dual of dodecahedron ( $\mathrm{l}_{\mathrm{h}}$ symmetry).
$\rightarrow 12$ vertices, 20 edge-sharing triangles $\rightarrow$ Frustration (triangles)
$\rightarrow$ classical magnetization discontinuity.
C. Schroeder, H.-J. Schmidt, J. Schnack, and M. Luban, Phys. Rev. Lett. 94, 207203 (2005)
$\rightarrow$ singlets inside the singlet-triplet gap.
$\rightarrow$ strong similarities in low-energy spectrum with dodecahedron.
$\rightarrow$ consider bigger $I_{\mathrm{h}}$ fullerene duals $\rightarrow$ quantum discontinuities?
$\rightarrow$ next bigger: pentakis dodecahedron.

## PENTAKIS DODECAHEDRON

32 vertices
$\rightarrow 20$ 6-fold vertices, 12 5-fold vertices, 60 edge-sharing triangles.
$\rightarrow 2$ nonequivalent edges (black-red).

Dual of the truncated icosahedron.
$I_{h}$ spatial symmetry group
$\rightarrow 120$ symmetry operations.
$\rightarrow 10$ irreducible representations.

## PENTAKIS DODECAHEDRON

Antiferromagnetic Heisenberg Model

$\left.\mathrm{H}=\sum_{\langle i\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{\mathrm{j}}+\mathrm{J} \sum_{\langle i j}\right\rangle \mathbf{S}_{i} \cdot \mathbf{S}_{j}-\mathrm{h} \sum \mathrm{S}_{\mathrm{i}}{ }^{2}, \mathrm{~J}>0$
J=0: dodecahedron + uncoupled spins.
$J \rightarrow \infty$ : quadrangles linked together.
$[\mathrm{H}, \mathrm{S}]=0,\left[\mathrm{H}, \mathrm{S}^{z}\right]=0$
$\rightarrow I_{h}$ and spin inversion symmetry characterize states.

FRUSTRATION: $s_{i}=1 / 2,1,3 / 2, \ldots, \infty$

## CLASSICAL SPINS $\mathbf{s}_{\mathbf{i} \rightarrow \infty}$

Zero-magnetic-field ground-state energy


Dashed lines: change of the symmetry of the lowest-energy configuration.


## CLASSICAL SPINS $\mathbf{s}_{\mathbf{i} \rightarrow \infty}$

Zero-magnetic-field ground-state correlations


6 -fold spins correlations (black bonds)


6 -fold and 5 -fold spins correlations (red bonds)


## CLASSICAL SPINS $\mathbf{s}_{\mathbf{i} \rightarrow \infty}$

Zero-magnetic-field ground-state magnetization


black: total magnetization, red: total of six-fold spins, green: total of five-fold spins.


## CLASSICAL SPINS $\mathbf{s i n}_{\boldsymbol{i} \rightarrow \infty}$

Ground-state magnetization and susceptibility discontinuities in a field

+: magnetization discontinuity, x : susceptibility discontinuity.

## CLASSICAL SPINS $\mathbf{s}_{\mathbf{i} \rightarrow \infty}$

Ground-state magnetization and susceptibility discontinuities in a field


+: magnetization discontinuity, x : susceptibility discontinuity.

## CLASSICAL SPINS $\mathbf{s}_{\boldsymbol{i} \rightarrow \infty}$

Ground-state magnetization and susceptibility discontinuities in a field

| appear | disappear | $J$ | $\frac{h}{h_{2 a t}}$ | $\left\|N_{M}, N_{\chi}\right\|$ | appear | disappear | $J$ | $\frac{h}{h_{a+t}}$ | $N_{M}, N_{\chi}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - | 0 | 0+ | 4,0 | 34 | - | 0.755654 | 0 | 6,3 |
| 2 | - | 0 | 0.26350 | 4,0 | 35 | $33,11^{\prime}$ | 1.010 | 0.132 | 6,2 |
| 3 | - | 0 | 0.26983 | 4,0 | $36,12^{\prime}$ | 4 | 1.012 | 0.597 | 6,3 |
| 4 | - | 0 | 0.73428 | 4,0 | 37 | 3,36 | 1.015 | 0.597 | 5,3 |
| $1^{\prime}, 2^{\prime}$ | - | 0+ | 0+ | 4,2 | 38 | 37,12 ${ }^{\prime}$ | 1.019 | 0.598 | 5,2 |
| 5,6 | - | 0.228 | 0.07 | 6,2 | 39,40 | 38 | 1.023 | 0.600 | 6,2 |
| 7,8 | - | 0.229 | 0.07 | 8,2 | 41,42 | - | 1.04939 | 0.04 | 8,2 |
| 9 | 5,7 | 0.281 | 0.0414 | 7,2 | $13^{\prime}$ | 41 | 1.04942 | 0.02 | 7,3 |
| - | 1,6 | 0.406 | 0.225 | 5,2 | $14^{\prime}$ | $13^{\prime}$ | 1.049684 | 0 | 7,3 |
| 10 | $1^{\prime}$ | 0.417 | 0.240 | 6,1 | 43 | 34,42 | 1.0497 | 0.11 | 6,3 |
| $11,3^{\prime}$ | 8 | 0.4194 | 0.233 | 6,2 | 44 | 35,43 | 1.0509 | 0.142 | 5,3 |
| - | 10,11 | 0.41971 | 0.235 | 4,2 | 45 | 28,44 | 1.0534 | 0.159 | 4,3 |
| - | $2^{\prime}, 3^{\prime}$ | 0.41979 | 0.235 | 4,0 | 46,47 | 2 | 1.0542 | 0.549 | 5,3 |
| $4^{\prime}, 5^{\prime}$ | - | 0.486 | 0.022 | 4,2 | 48,15 | - | 1.06168 | 0.58 | 6,4 |
| 12 | $4^{\prime}$ | 0.489 | 0.021 | 5,1 | 49 | 39,47 | 1.0622 | 0.556 | 5,4 |
| $13,6^{\prime}$ | $5^{\prime}$ | 0.497 | 0.024 | 6,1 | 50 | 40,48 | 1.06266 | 0.654 | 4,4 |
| $14,7^{\prime}$ | $6^{\prime}$ | 0.503 | 0.024 | 7,1 | 51 | 46,49 | 1.06271 | 0.548 | 3,4 |
| $15,8^{\prime}$ | 12 | 0.512 | 0.0166 | 7,2 | 52 | 51,15 ${ }^{\prime}$ | 1.0664 | 0.506 | 3,3 |
| 16 | $7^{\prime}$ | 0.526 | 0.0228 | 8,1 | 53 | $45,10^{\prime}$ | 1.0706 | 0.296 | 3,2 |
| 17,18 | - | 0.526 | 0.026 | 10,1 | 54 | $53,9^{\prime}$ | 1.0714 | 0.308 | 3,1 |
| 19 | 16,17 | 0.526 | 0.024 | 9,1 | 55,16 ${ }^{\prime}$ | 52 | 1.07262 | 0.425 | 3,2 |
| 20 | $8^{\prime}$ | 0.527 | 0.01696 | 10,0 | $56,17^{\prime}$ | 54 | 1.073852 | 0.371 | 3,3 |
| 21 | 13,20 | 0.532 | 0.0168 | 9,0 | 57,18' | 56 | 1.073859 | 0.374 | 3,4 |
| 22 | 14,19 | 0.534 | 0.0171 | 8,0 | - | 55,57 | 1.07385998 | 0.375 | 1,4 |
| 23 | 21,22 | 0.535 | 0.0164 | 7,0 | 58,59 | 50 | 1.07625 | 0.897 | 2,4 |
| 24,25 | 18 | 0.535 | 0.053 | 8,0 | 60,19' | 59 | 1.07643 | 0.8991 | 2,5 |
| $26,9^{\prime}$ | 25 | 0.581 | 0.114 | 8,1 | $20^{\prime}, 21^{\prime}$ | $19^{\prime}$ | 1.07647 | 0.8996 | 2,6 |
| $10^{\prime}$ | 26 | 0.586 | 0.117 | 7,2 | $61,22^{\prime}, 23^{\prime}$ | - | 1.0768 | 1 | 3,8 |
| 27,28 | 24 | 0.588 | 0.0127 | 8,2 | 62 | $60,22^{\prime}$ | 1.07923 | 0.933 | 3,7 |
| 29 | 15,23 | 0.590 | 0.0021 | 7,2 | 63 | $62,23^{\prime}$ | 1.07959 | 0.937 | 3,6 |
| 30 | 9 | 0.591550 | 0 | 7,2 | 64 | 61,63 | 1.080146 | 0.9435 | 2,6 |
| 31 | 29,30 | 0.596 | 0.0007 | 6,2 | - | $58,20^{\prime}, 21^{\prime}$ | 1.085 | 0.9101 | 1,4 |
| 32 | 27,31 | 0.600 | 0.0004 | 5,2 | - | 64 | $\frac{3}{20}(5+\sqrt{5})$ | 1 | 0,4 |
| - | 32 | 0.603929 | 0 | 4,2 | $24^{\prime}, 25^{\prime}$ | $14^{\prime}, 16^{\prime}, 17^{\prime}, 18^{\prime}$ | $\frac{3}{20}(5+\sqrt{5})$ | $\frac{1}{4}$ | 0,2 |
| 33 | - | 0.620646 | 0 | 5,2 | - | $24^{\prime}$ | $\frac{5+\sqrt{5}}{4}$ | 0 | 0,1 |
| $11^{\prime}$ | - | 0.64075 | 0 | 5,3 |  |  |  |  |  |

## CLASSICAL SPINS $\mathbf{s}_{\mathbf{i} \rightarrow \infty}$

Width of ground-state magnetization discontinuities in a field





## CLASSICAL SPINS $\mathbf{s}_{\boldsymbol{i} \rightarrow \infty}$

Lowest-energy configuration unique polar angles

red arrows: magnetization discontinuities, green arrows: susceptibility discontinuities, $\mathrm{CF}_{\mathrm{i}}$ : lowest energy configurations.


## QUANTUM SPINS $s_{i}=1 / 2$

Block-diagonalization with symmetries
Hilbert space: $2^{32}=4,294,967,296$ states.
Biggest $S^{z}$ subsector: $S^{z}=0$ with $601,080,390$ states.
Biggest symmetry subsector: $\mathrm{H}_{\mathrm{g}}$ of $\mathrm{S}^{\mathrm{z}}=1$ with $23,585,037$ states.


## QUANTUM SPINS $s_{i}=1 / 2$

Zero-magnetic-field ground-state energy


| $J$-range | $S$ | Irreducible <br> representation | Degeneracy | Spin <br> inversion |
| :---: | :---: | :---: | :---: | :---: |
| $0 \leq J<0.371$ | 0 | $A_{u}$ | 1 | s |
| $0.371 \leq J \leq 0.642$ | 2 | $A_{g}$ | 5 | s |
| $0.642<J \leq 1.506$ | 0 | $A_{u}$ | 1 | s |
| $1.506<J \leq 1.542$ | 1 | $T_{1 u}$ | 9 | a |
| $1.542<J<1.609$ | 2 | $H_{g}$ | 25 | s |
| $1.609 \leq J<1.685$ | 3 | $T_{2 u}$ | 21 | a |
| $1.685 \leq J$ | 4 | $A_{g}$ | 9 | s |

Dashed lines: change of the total spin S and the symmetry of the lowest-energy configuration.

## QUANTUM SPINS $s_{i}=1 / 2$

Zero-magnetic-field ground-state correlations


Black circles: 6-fold spins correlations.
Red squares: 6-fold and 5-fold spins correlations.


## QUANTUM SPINS $\mathbf{s}_{\mathrm{i}}=\mathbf{1 / 2}$

Low-energy spectrum

| $\frac{5}{10+00^{\prime \prime}}$ |  | irrep |  | $\frac{E}{5+0}$ |  | irrep | ult. |  |  |  |  |  |  |  |  | $\begin{array}{c\|c\|c\|} \frac{E}{\text { motion }} & S \text { irrep. } \\ J=0.5 \end{array}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $J=0$ |  |  |  | 隹 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| -0.32407 | 0 | $A_{u}$ | 1 | -0.23675 | 0 | $A^{*}$ | 1 | -0.21384 | 0 | $A_{u}$ | 1 | 0.19929 | 2 | $A_{s}$ | 5 | 0.19068 | 2 | $A_{9}$ | 5 |
| -0.31355 | 0 | $\mathrm{H}_{0}$ | 5 | . 23643 | 1 | $T_{28}$ | 9 | 0.21332 | 1 | $T_{20}$ | 9 | 0.19891 | 0 | $A_{\sim}$ | 1 | 0.18985 | 2 | $F_{s}$ | 20 |
| -0.31175 | 0 | $A_{9}$ | 1 | 0.23636 | 1 | $T_{18}$ | 9 | 0.21323 | 1 | $T_{19}$ | 9 | 0.19875 | 0 | $A_{s}$ | 1 | 0.18976 | 0 | $A_{9}$ | 1 |
| -0.30695 | 1 | $T_{29}$ | 9 | 0.23619 | 1 | $T_{\text {L }}$ | 9 | 0.21298 | 1 | $T_{2 u}$ | 9 | 0.19866 |  | $T_{1 \times}$ | 9 | -0.18950 | 1 | $T_{1 u}$ | 9 |
| -0.30622 | 1 | $F_{\sim}$ | 12 | 0.23618 | 0 | $H_{u}$ | 5 | -0.21288 | 0 | $A_{9}$ | 1 | 0.19859 | 2 | $F_{0}$ | 20 | -0.18950 | 2 | $H_{\sim}$ | 25 |
| -0.30435 | 1 | $T_{2 u}$ | 9 | 0.23617 | 0 | $F_{\text {u }}$ | 4 | 0.21286 | 0 | $F_{\sim}$ | 4 | 0.19849 |  | $F_{0}$ | 28 | -0.18941 | 0 | $A_{u}$ | 1 |
| -0.29904 | 1 | $T_{19}$ | 9 | 0.23613 | 0 | $A_{\sim}$ | 1 | -0.21280 | 1 | $H_{u}$ | 15 | 0.19845 | 2 | $H_{u}$ | 25 | -0.18932 | 3 | $F_{s}$ | 28 |
| -0.29599 | 0 | $H_{u}$ | 5 | 0.23610 | 0 | $A_{s}$ | 1 | 0.21276 | 0 | $H_{s}$ | 5 | 0.19844 |  | $T_{1 s}$ | 9 | 0.18927 | 1 | $T_{2 u}$ | 9 |
| -0.28983 | 1 | $T_{2 u}$ | 9 | 0.23609 | 1 | $\mathrm{H}_{u}$ | 15 | -0.21276 | 0 | $A_{u}$ | 1 | 0.19844 | 1 | $T_{\text {Lx }}$ | 9 | 0.18906 | 2 | $H_{s}$ | 25 |
| -0.28981 | 1 | $H_{u}$ | 15 | -0.23608 | 1 | $F_{u}$ | 12 | -0.21275 | 0 | $H_{a}$ | 5 | 0.19841 | 0 | $H_{9}$ | 5 | 0.18905 | 0 | $H_{s}$ | 5 |
| -0.28886 | 1 | $T_{1 u}$ | 9 | 0.23607 | 0 | $H_{u}$ | 5 | 0.21272 | 1 | $F_{\sim}$ | 12 | 0.19837 | 1 | $T_{2 s}$ | 9 | 0.18901 | 1 | $F_{\sim}$ | 12 |
| -0.28834 | 2 | $F_{s}$ | 20 | 23603 | 2 | $H_{u}$ | 25 | 0.21270 | 2 | $A_{9}$ | 5 | 0.19820 | 3 | $T_{1 \sim}$ | 21 | 0.18900 | 1 | $T_{29}$ | 9 |
| $J=0.6$ |  |  |  | $J=0.7$ |  |  |  | $J=0.8$ |  |  |  | $J=0.9$ |  |  |  | $J=1$ |  |  |  |
| -0.18517 | 2 | $A_{9}$ | 5 | 0.18307 | 0 | $A^{*}$ | 1 | 0.18390 | 0 | $A_{u}$ | 1 | 0.18566 | 0 | $A^{*}$ | 1 | 0.18774 | 0 | $A_{u}$ | 1 |
| -0.18436 | 0 | $A_{u}$ | 1 | 0.18216 | 1 | $T_{28}$ | 9 | 0.18157 | 1 | $T_{29}$ | 9 | 0.18243 | 0 | $F_{0}$ | 4 | 0.18458 | 0 | $F_{s}$ | 4 |
| -0.18423 | 2 | $F_{s}$ | 20 | 0.18168 | , | $T_{\text {I- }}$ | 9 | 0.18101 | 1 | $T_{1 u}$ | 9 | 0.18193 | 0 | $A_{s}$ | 1 | 0.18383 | 0 | $A_{9}$ | 1 |
| -0.18421 | 1 | $T_{29}$ | 9 | 0.18152 | 2 | $A_{s}$ | 5 | 0.18075 | 0 | $A_{9}$ | 1 | 0.18172 |  | $T_{2 s}$ | 9 | 0.18282 | 0 | $\mathrm{H}_{s}$ | 5 |
| -0.18415 | 0 | $A_{9}$ | 1 | 0.18127 | 0 | $A_{s}$ | 1 | 0.18075 | 0 | $F_{s}$ | 4 | 0.18111 | 1 | $T_{\text {I* }}$ | 9 | 0.18231 | 1 | $T_{29}$ | 9 |
| -0.18392 | 1 | $T_{1 u}$ | 9 | 0.18118 | 1 | $T_{\text {2- }}$ | 9 | 0.18041 | 1 | $T_{2 u}$ | 9 | 0.18096 | 0 | $H_{u}$ | 5 | 0.18225 | 0 | $\mathrm{H}_{\sim}$ | 5 |
| -0.18379 | 2 | $H_{u}$ | 25 | 0.18095 | 1 | $F_{9}$ | 12 | 0.18040 | 0 | $H_{\text {a }}$ | 5 | 0.18082 | 0 | $\mathrm{H}_{9}$ | 5 | 0.18196 | 0 | $\mathrm{H}_{s}$ | 5 |
| -0.18356 | 1 | $F_{s}$ | 12 | 0.18095 | - | $H_{u}$ | 5 | -0.18008 | 1 | $F_{s}$ | 12 | 0.18046 | 1 | $T_{2 \sim}$ | 9 | 0.18165 | 1 | $T_{1 u}$ | 9 |
| -0.18355 | 1 | $T_{2 u}$ | 9 | 0.18055 | 2 | $F_{9}$ | 20 | 0.17990 | 0 | $H_{s}$ | 5 | 0.15044 | 0 | $H_{9}$ | 5 | 0.18160 | 1 | $A_{u}$ | 3 |
| -0.18349 | 1 | $T_{1 u}$ | 9 | 0.18054 | 1 | $F_{u}$ | 12 | 0.17948 | 1 | $F_{\sim}$ | 12 | 0.18016 | 1 | $F_{0}$ | 12 | 0.18106 | 1 | $F_{s}$ | 12 |
| -0.18340 | 1 | $F_{\sim}$ | 12 | 0.18051 | 0 | $\mathrm{H}_{9}$ | 5 | 0.17947 | 0 | $\mathrm{H}_{s}$ | 5 | 0.17941 | 1 | $A^{*}$ | 3 | 0.18105 | 0 | $F_{\sim}$ | 4 |
| -0.18339 | - | $T_{2 u}$ | 9 | 8043 | 0 | $F_{9}$ | 4 | 0.17925 | 1 | $T_{1 \rho}$ | 9 | 0.17940 | 1 | $F_{u}$ | 12 | 0.18091 | 1 | $T_{2 u}$ | 9 |
| $J=1.1$ |  |  |  | $J=1.2$ |  |  |  | $J=1.3$ |  |  |  | $J=1.4$ |  |  |  | J=1.5 |  |  |  |
| -0.18985 | 0 | $A_{u}$ | 1 | 0.19190 | 0 | $A^{*}$ | 1 | 0.19385 | 0 | $A_{u}$ | 1 | 0.19568 | , | $A_{\sim}$ | 1 | -0.19739 | 0 | $A_{u}$ | 1 |
| -0.18680 | 0 | $F_{s}$ | 4 | 0.18895 | 0 | $F_{0}$ | 4 | 0.19116 | 1 | $T_{1 u}$ | 9 | 0.19437 |  | $T_{1 \times}$ | 9 | -0.19732 | 1 | $T_{1 u}$ | 9 |
| -0.18595 | 0 | $A_{9}$ | 1 | 0.18807 | 0 | $A_{s}$ | 1 | 0.19100 | 0 | $F_{s}$ | 4 | 0.19408 | 1 | $T_{2 g}$ | 9 | -0.19702 | 1 | $T_{29}$ | 9 |
| -0.18504 | 0 | $\mathrm{H}_{0}$ | 5 | 0.18767 | 1 | $T_{\text {I* }}$ | 9 | 0.19089 | 1 | $T_{29}$ | 9 | 0.19292 | 0 | $F_{0}$ | 4 | 0.19679 | 2 | $\mathrm{H}_{s}$ | 25 |
| -0.18405 | 0 | $H_{u}$ | 5 | 0.18745 | 1 | $T_{28}$ | 9 | 0.19014 | 0 | $A_{9}$ | 1 | 0.19264 | 1 | $F_{u}$ | 12 | -0.19649 | 2 | $A_{9}$ | 5 |
| -0.18403 | 1 | $T_{20}$ | 9 | 0.18725 | 0 | $H_{s}$ | 5 | 0.18936 | 1 | $F_{\text {\% }}$ | 12 | 0.19246 | 2 | $\mathrm{H}_{0}$ | 25 | -0.19574 | 2 | $H_{\sim}$ | 25 |
| -0.18397 | 1 | $T_{1 u}$ | 9 | 0.18611 | 0 | $H_{9}$ | 5 | 0.18936 | 0 | $H_{s}$ | 5 | 0.19220 | 0 | $A_{s}$ | 1 | -0.19566 | 1 | $F_{\sim}$ | 12 |
| -0.18395 | 0 | $\mathrm{H}_{0}$ | 5 | 0.18610 | 0 | $H_{u}$ | 5 | -0.18860 | 1 | $F_{s}$ | 12 | 0.19214 | 2 | $A_{s}$ | 5 | 0.19538 | - | $T_{2 u}$ | 21 |
| -0.18375 | 1 | $A_{u}$ | 3 | 0.18582 | 1 | $F_{u}$ | 12 | 0.18831 | 0 | $H_{s}$ | 5 | 0.19181 | 1 | $F_{0}$ | 12 | 0.19481 | 1 | $F_{s}$ | 12 |
| -0.18343 | 0 | $F_{\sim}$ | 4 | 0.18578 | , | $A_{\sim}$ | 3 | 0.18822 | 0 | $H_{u}$ | 5 | 0.19145 | 1 | $T_{\text {Lx }}$ | 9 | 0.19472 | 0 | $F_{s}$ | 4 |
| -0.18305 | 0 | $T_{2 u}$ | 3 | 0.18571 | 0 | $F_{\text {u }}$ | 4 | 0.18814 | 1 | $T_{2 u}$ | 9 | 0.19139 | 2 | $H_{u}$ | 25 | -0.19452 | 1 | $T_{2 u}$ | 9 |
| -0.18294 | 1 | $F_{s}$ | 12 | 0.18541 | 1 | $F_{0}$ | 12 | 0.18785 | 0 | $F_{\sim}$ | 4 | 0.19135 | 0 | $\mathrm{H}_{9}$ | 5 | 0.19442 | 0 | $A_{9}$ | 1 |
| $J=1.6$ |  |  |  | $J=1.7$ |  |  |  | $J=1.8$ |  |  |  | $J=2$ |  |  |  | $y \rightarrow \infty$ |  |  |  |
| -0.20073 | 2 | $\mathrm{H}_{0}$ | 25 | 0.20558 | \| | $A_{s}$ | 9 | 0.21106 | 4 | $A_{9}$ | 9 | 0.22074 | I | $A_{s}$ | 9 | -0.33288 | 4 | $A_{9}$ | 9 |
| -0.20062 | 3 | $T_{2 u}$ | 21 | 0.20540 | 3 | $T_{2 \times}$ | 21 | -0.20977 | 3 | $T_{2 u}$ | 21 | 0.21749 | 3 | $T_{2 \sim}$ | 21 | -0.31975 |  | $T_{1 u}$ | 21 |
| -0.20045 | 2 | $A_{9}$ | 5 | 0.20433 | 2 | $\mathrm{H}_{0}$ | 25 | -0.20819 | 3 | $F_{s}$ | 28 | 0.21599 | 3 | $F_{0}$ | 28 | -0.30980 | 3 | $\mathrm{H}_{s}$ | 35 |
| -0.20003 | 1 | $T_{1 u}$ | 9 | 0.20407 | 2 | $A_{s}$ | 5 | 0.20764 | 2 | $H_{s}$ | 25 | 0.21371 |  | $T_{\text {I* }}$ | 21 | -0.30756 | 3 | $T_{2 u}$ | 21 |
| -0.19973 | 1 | $T_{29}$ | 9 | 0.20377 | 3 | $F_{9}$ | 28 | 0.20738 | 2 | $A_{9}$ | 5 | 0.21350 | 2 | $\mathrm{H}_{9}$ | 25 | -0.30708 | 2 | $\mathrm{H}_{s}$ | 25 |
| -0.19970 | 2 | $H_{u}$ | 25 | 0.20333 | 2 | $H_{u}$ | 25 | -0.20666 | 2 | $H_{a}$ | 25 | 0.21325 | 2 | $A_{8}$ | 5 | -0.30681 | 3 | $F_{s}$ | 28 |
| -0.19958 | 4 | $A_{0}$ | 9 | 0.20253 | 1 | $T_{\text {I* }}$ | 9 | 0.20485 | 1 | $T_{1 u}$ | 9 | 0.21255 | 2 | $H_{u}$ | 25 | -0.30656 | 5 | $A_{9}$ | 11 |
| -0.19900 | 0 | $A_{u}$ | 1 | 0.20222 | 1 | $T_{28}$ | 9 | 0.20462 | 3 | $T_{1 u}$ | 21 | 0.21098 | 2 | $\mathrm{H}_{9}$ | 25 | -0.30604 | 3 | $F_{\sim}$ | 28 |
| -0.19895 | 3 | $F_{s}$ | 28 | 0.20107 | 2 | $F_{0}$ | 20 | 0.20451 | 1 | $T_{2,}$ | 9 | 0.21045 | 2 | $F_{0}$ | 20 | -0.30356 | 2 | $A_{9}$ | 5 |
| -0.19843 | 1 | $F_{*}$ | 12 | -0.20099 | 1 | $F_{u}$ | 12 | -0.20445 | 2 | $F_{s}$ | 20 | -0.20994 | 2 | $F_{u}$ | 20 | -0.29817 |  | $T_{1 u}$ | 27 |
| -0.19756 | 1 | $F_{s}$ | 12 | -0.20051 | 0 | $A^{*}$ | 1 | -0.20379 | 2 | $\mathrm{H}_{s}$ | 25 | -0.20951 | 3 | $\mathrm{H}_{9}$ | 35 | -0.29802 | 2 | $T_{2 u}$ | 15 |
| -0.1973 |  | $F_{s}$ | 20 | -0.2003 |  | $F_{u}$ | 20 | -0.2037 |  | $F_{\text {x }}$ | 20 | -0.2092 |  | $F_{u}$ | 28 | -0.297 |  | $\mathrm{Ha}_{\sim}$ | 25 |

## QUANTUM SPINS $s_{i}=1 / 2$

Ground-state magnetization discontinuities in a field


Black circles: $\quad \Delta \mathrm{S}^{2}=1$
Red squares: $\quad \Delta \mathrm{S}^{z}=2$
Green diamonds: $\Delta \mathrm{S}^{2}=3$
Higher J: weaker frustration, equidistant jumps

## QUANTUM SPINS $s_{i}=1 / 2$

Ground-state magnetization discontinuities in a field


Black circles: $\quad \Delta \mathrm{S}^{2}=1$
Red squares: $\quad \Delta \mathrm{S}^{\mathrm{z}}=2$
Green diamonds: $\Delta S^{2}=3$

## QUANTUM SPINS $s_{i}=1 / 2$

Ground-state magnetization discontinuities in a field

| $J$-range | $S_{\text {below }}^{z} \mid S_{\text {above }}^{z}$ | Irrep. below | Irrep. above |  |
| :---: | :---: | :---: | :---: | ---: |
| $0 \leq J \leq 1.012$ | 10 | 12 | $A_{g}$ | $A_{u}$ |
| $0.279<J \leq 0.302$ | 1 | 3 | $T_{2 g}$ | $F_{g}$ |
| $0.302<J<0.307$ | 0 | 3 | $A_{u}$ | $F_{g}$ |
| $0.307 \leq J \leq 0.371$ | 0 | 2 | $A_{u}$ | $A_{g}$ |
| $0.642<J<0.743$ | 0 | 2 | $A_{u}$ | $A_{g}$ |
| $0.707<J \leq 1.032$ | 4 | 6 | $A_{g}$ | $A_{u}$ |
| $0.980 \leq J \leq 1.071$ | 6 | 8 | $A_{u}$ | $A_{g}$ |
| $1.050 \leq J \leq 1.056$ | 4 | 6 | $A_{g}$ | $A_{u}$ |
| $1.074<J \leq 1.075$ | 6 | 8 | $A_{g}$ | $A_{g}$ |

Three discontinuities

$$
\begin{aligned}
& \rightarrow 0.707<\mathrm{J}<0.743 \\
& \rightarrow 0.980 \leq \mathrm{J} \leq 1.012
\end{aligned}
$$

Can have degenerate irreducible representations on either side of a jump

## CONCLUSIONS

$\rightarrow$ Antiferromagnetic Heisenberg model on the pentakis dodecahedron.
$\rightarrow$ Frustration results in nontrivial magnetic properties
$\rightarrow$ classical magnetization and susceptibility discontinuities.
$\rightarrow$ quantum magnetization discontinuities ( $\mathrm{I}_{\mathrm{h}}$ symmetry) as big as $\Delta S^{2}=3$.
$\rightarrow$ singlets inside the singlet-triplet gap.

