DISCONTINUOUS QUANTUM AND CLASSICAL MAGNETIC RESPONSE OF THE PENTAKIS DODECAHEDRON

N. P. Konstantinidis

The American University of Iraq in Sulaimani, Kurdistan Region, Iraq

cond-mat/2101.06739

MOTIVATION

- \rightarrow Fullerene molecules: 12 pentagons and (n/2) 10 hexagons.
- \rightarrow Edge-sharing polygons.
- \rightarrow Frustration (pentagons)
 - \rightarrow classical magnetization and susceptibility discontinuities.
 - \rightarrow quantum magnetization discontinuities (I_h symmetry).
 - \rightarrow singlets inside the singlet-triplet gap.

MOTIVATION

- \rightarrow Icosahedron: dual of dodecahedron (I_h symmetry).
- \rightarrow 12 vertices, 20 edge-sharing triangles \rightarrow Frustration (triangles)
 - \rightarrow classical magnetization discontinuity.
- C. Schroeder, H.-J. Schmidt, J. Schnack, and M. Luban, Phys. Rev. Lett. 94, 207203 (2005)
 - \rightarrow singlets inside the singlet-triplet gap.
 - \rightarrow strong similarities in low-energy spectrum with dodecahedron.
 - \rightarrow consider bigger I_h fullerene duals \rightarrow quantum discontinuities?
 - \rightarrow next bigger: pentakis dodecahedron.

PENTAKIS DODECAHEDRON

32 vertices

- → 20 6-fold vertices,
 12 5-fold vertices,
 60 edge-sharing triangles.
- \rightarrow 2 nonequivalent edges (black-red).

Dual of the truncated icosahedron.

- I_h spatial symmetry group
- \rightarrow 120 symmetry operations.
- \rightarrow 10 irreducible representations.

PENTAKIS DODECAHEDRON

J=0: dodecahedron + uncoupled spins.

 $J \rightarrow \infty$: quadrangles linked together.

[H,S]=0, $[H,S^{z}]=0$ \rightarrow I_h and spin inversion symmetry

characterize states.

FRUSTRATION: $s_i = 1/2, 1, 3/2, ..., \infty$

Zero-magnetic-field ground-state energy

Zero-magnetic-field ground-state correlations

6-fold spins correlations (black bonds)

6-fold and 5-fold spins correlations (red bonds)

Zero-magnetic-field ground-state magnetization

black: total magnetization, red: total of six-fold spins, green: total of five-fold spins.

Ground-state magnetization and susceptibility discontinuities in a field

+: magnetization discontinuity, x: susceptibility discontinuity.

Ground-state magnetization and susceptibility discontinuities in a field

+: magnetization discontinuity, x: susceptibility discontinuity.

Ground-state magnetization and susceptibility discontinuities in a field

appear	disappear	J	$\frac{h}{h_{sat}}$	N_M, N_χ	appear	disappear	J	$\frac{h}{h_{sat}}$	N_M, N_χ	
1	-	0	0+	4,0	34	-	0.755654	0	6,3	
2	-	0	0.26350	4,0	35	33,11'	1.010	0.132	6,2	
3	-	0	0.26983	4,0	36,12'	4	1.012	0.597	6,3	
4	-	0	0.73428	4,0	37	3,36	1.015	0.597	5,3	
1', 2'	-	0+	0+	4,2	38	37,12'	1.019	0.598	5,2	
5,6	-	0.228	0.07	6,2	39,40	38	1.023	0.600	6,2	
7,8	-	0.229	0.07	8,2	41,42	-	1.04939	0.04	8,2	
9	5,7	0.281	0.0414	7,2	13'	41	1.04942	0.02	7,3	
-	1,6	0.406	0.225	5,2	14'	13'	1.049684	0	7,3	
10	1'	0.417	0.240	6,1	43	34,42	1.0497	0.11	6,3	
$^{11,3'}$	8	0.4194	0.233	6,2	44	35,43	1.0509	0.142	5,3	
-	10,11	0.41971	0.235	4,2	45	28,44	1.0534	0.159	4,3	
-	2', 3'	0.41979	0.235	4,0	46,47	2	1.0542	0.549	5,3	
4', 5'	-	0.486	0.022	4,2	48,15'	-	1.06168	0.58	6,4	
12	4'	0.489	0.021	5,1	49	39,47	1.0622	0.556	5,4	
13,6'	5'	0.497	0.024	6,1	50	40,48	1.06266	0.654	4,4	
14,7'	6'	0.503	0.024	7,1	51	46,49	1.06271	0.548	3,4	
15,8'	12	0.512	0.0166	7,2	52	51,15'	1.0664	0.506	3,3	
16	7'	0.526	0.0228	8,1	53	45,10'	1.0706	0.296	3,2	
17,18	-	0.526	0.026	10,1	54	53,9'	1.0714	0.308	3,1	
19	16,17	0.526	0.024	9,1	55,16'	52	1.07262	0.425	3,2	
20	8'	0.527	0.01696	10,0	56,17'	54	1.073852	0.371	3,3	
21	13,20	0.532	0.0168	9,0	57,18'	56	1.073859	0.374	3,4	
22	14,19	0.534	0.0171	8,0	-	55,57	1.07385998	0.375	1,4	
23	21,22	0.535	0.0164	7,0	58,59	50	1.07625	0.897	2,4	
24,25	18	0.535	0.053	8,0	60,19'	59	1.07643	0.8991	2,5	
26,9'	25	0.581	0.114	8,1	20', 21'	19'	1.07647	0.8996	2,6	
10'	26	0.586	0.117	7,2	61,22',23'	-	1.0768	1	3,8	
27,28	24	0.588	0.0127	8,2	62	60,22'	1.07923	0.933	3,7	
29	15,23	0.590	0.0021	7,2	63	62,23'	1.07959	0.937	3,6	
30	9	0.591550	0	7,2	64	61,63	1.080146	0.9435	2,6	
31	29,30	0.596	0.0007	6,2	-	$58{,}20^{\prime}{,}21^{\prime}$	1.085	0.9101	1,4	
32	27,31	0.600	0.0004	5,2	-	64	$\frac{3}{20}(5+\sqrt{5})$	1	0,4	
-	32	0.603929	0	4,2	24', 25'	$14^\prime, 16^\prime, 17^\prime, 18^\prime$	$\frac{3}{20}(5 + \sqrt{5})$	$\frac{1}{4}$	0,2	
33	-	0.620646	0	5,2	-	24'	$\frac{5+\sqrt{5}}{4}$	0	0,1	
11'	-	0.64075	0	5,3						

Width of ground-state magnetization discontinuities in a field

Lowest-energy configuration unique polar angles

red arrows: magnetization discontinuities, green arrows: susceptibility discontinuities, CF_i: lowest energy configurations.

Block-diagonalization with symmetries

Hilbert space: $2^{32} = 4,294,967,296$ states. Biggest S^z subsector: S^z=0 with 601,080,390 states. Biggest symmetry subsector: H_g of S^z=1 with 23,585,037 states.

Zero-magnetic-field ground-state energy

Dashed lines: change of the total spin S and the symmetry of the lowest-energy configuration.

Zero-magnetic-field ground-state correlations

Black circles: 6-fold spins correlations. Red squares: 6-fold and 5-fold spins correlations.

Low-energy spectrum

$\frac{E}{30+60.7}$ S	irrep.	mult.	$\frac{E}{30+60J}$	S	irrep.	mult.	E 30+607	S	irrep.	mult.	$\frac{E}{30+60J}$	s irrep.	mult.	$\frac{E}{30+607}$ S in	ep.	mult.
J = 0			J = 0.2			J = 0.3			J = 0.4			J = 0.5				
-0.32407 0	A_u	1	-0.23675	0	A_{n}	1	-0.21384	0	A_{u}	1	-0.19929 2	$2 A_{\pi}$	5	-0.19068 2	A _o	5
-0.31355 0	H_{g}	5	-0.23643	1	T_{2g}	- 9	-0.21332	1	T_{2g}	9	-0.19891) A _n	1	-0.18985 2	F_{g}	20
-0.31175 0	A_g	1	-0.23636	1	T_{1g}	- 9	-0.21323	1	T_{1g}	9	-0.19875	A_{π}	1	-0.18976 0	4.0	1
-0.30695 1	T_{2g}	9	-0.23619	1	T_{2u}	- 9	-0.21298	1	T_{2u}	9	-0.19866	$1 T_{1u}$	9	-0.18950 1 7	1u	9
-0.30622 1	F_{u}	12	-0.23618	0	H_u	5	-0.21288	0	A_g	1	-0.19859 2	$2 F_g$	20	-0.18950 2 1	T_{∞}	25
-0.30435 1	T_{2u}	9	-0.23617	0	F_u	4	-0.21286	0	F_{π}	4	-0.19849 3	$3 - F_g$	28	-0.18941 0 2	A_u	1
-0.29904 1	T_{1g}	9	-0.23613	0	A_{u}	1	-0.21280	1	$H_{\rm n}$	15	-0.19845 2	2 H _u	25	-0.18932 3	F_{g}	28
-0.29599 0	$H_{\rm u}$	5	-0.23610	0	A_g	1	-0.21276	0	H_g	5	-0.19844	$1 T_{1g}$	9	-0.18927 1 7	24	9
-0.28983 1	T_{2u}	9	-0.23609	1	H_u	15	-0.21276	0	A_u	1	-0.19844	$1 T_{2u}$	9	-0.18906 2 1	H_{g}	25
-0.28981 1	$H_{\rm u}$	15	-0.23608	1	F_u	12	-0.21275	0	$H_{\rm u}$	5	-0.19841	H_g	5	-0.18905 0 1	H_{g}	5
-0.28886 1	T_{1u}	9	-0.23607	0	H_u	5	-0.21272	1	F_{u}	12	-0.19837	$1 T_{2g}$	9	-0.18901 1	F_{∞}	12
-0.28834 2	F_g	20	-0.23603	2	H_u	25	-0.21270	2	A_g	5	-0.19820 3	$3 T_{1u}$	21	-0.18900 1 7	29	9
J =	= 0.6		J = 0.7			J = 0.8			J = 0.9			J = 1	1			
-0.18517 2	A_g	5	-0.18307	0	A_{n}	1	-0.18390	0	A_u	1	-0.18566 (A_{π}	1	-0.18774 0	4 _u	1
-0.18436 0	A_u	1	-0.18216	1	T_{2g}	- 9	-0.18157	1	T_{2g}	9	-0.18243 (F_g	-4	-0.18458 0	F_{g}	4
-0.18423 2	F_g	20	-0.18168	1	T_{1u}	- 9	-0.18101	1	T_{1u}	9	-0.18193 (A_g	1	-0.18383 0	A_g	1
-0.18421 1	T_{2g}	9	-0.18152	2	A_{g}	5	-0.18075	0	A_g	1	-0.18172	$1 T_{2g}$	9	-0.18282 0 1	H_g	5
-0.18415 0	A_g	1	-0.18127	0	A_g	1	-0.18075	0	F_g	4	-0.18111	$1 T_{1u}$	9	-0.18231 1 7	29	9
-0.18392 1	T_{1u}	9	-0.18118	1	T_{2u}	- 9	-0.18041	1	T_{2u}	9	-0.18096 0	H_u	5	-0.18225 0 I	I_{∞}	5
-0.18379 2	$H_{\rm u}$	25	-0.18095	1	F_{g}	12	-0.18040	0	H_n	5	-0.18082 0	H_g	5	-0.18196 0 1	H_{g}	5
-0.18356 1	F_g	12	-0.18095	0	H_u	5	-0.18008	1	F_g	12	-0.18046	$1 T_{2u}$	9	-0.18165 1 7	14	9
-0.18355 1	T_{2u}	9	-0.18055	2	F_g	20	-0.17990	0	H_g	5	-0.18044 (H_g	5	-0.18160 1	4 _u	3
-0.18349 1	T_{1u}	9	-0.18054	1	F_u	12	-0.17948	1	F_{w}	12	-0.18016	$1 = F_g$	12	-0.18106 1	$F_{g} =$	12
-0.18340 1	F_{π}	12	-0.18051	0	H_g	5	-0.17947	0	H_g	5	-0.17941	$1 - A_{\infty}$	- 3	-0.18105 0	F_{∞}	4
-0.18339 1	T_{2u}	9	-0.18043	0	F_g	4	-0.17925	1	T_{1g}	9	-0.17940	$1 F_u$	12	-0.18091 1 7	24	9
J =	= 1.1		J = 1.2			J = 1.3			J = 1.4			J = 1.5				
-0.18985 0	A_u	1	-0.19190	0	A_{π}	1	-0.19385	0	A_u	1	-0.19568	A_{π}	1	-0.19739 0 2	4_u	1
-0.18680 0	F_g	4	-0.18895	0	F_g	4	-0.19116	1	T_{1u}	9	-0.19437	$1 T_{1u}$	9	-0.19732 1 7	1u	9
-0.18595 0	A_g	1	-0.18807	0	A_{S}	1	-0.19100	0	F_g	4	-0.19408	$1 T_{2g}$	9	-0.19702 1 7	29	9
-0.18504 0	H_g	5	-0.18767	1	T_{1u}	- 9	-0.19089	1	T_{2g}	9	-0.19292 (F_g	-4	-0.19679 2 1	H_g	25
-0.18405 0	$H_{\rm u}$	5	-0.18745	1	T_{2g}	9	-0.19014	0	A_g	1	-0.19264	$1 F_u$	12	-0.19649 2	A_g	5
-0.18403 1	T_{2g}	9	-0.18725	0	H_g	5	-0.18936	1	F_{π}	12	-0.19246	$2 H_g$	25	-0.19574 2 1	T_{∞}	25
-0.18397 1	T_{1u}	9	-0.18611	0	H_g	5	-0.18936	0	H_g	5	-0.19220	A_s	1	-0.19566 1	F_{∞}	12
-0.18395 0	H_g	5	-0.18610	0	H_u	5	-0.18860	1	F_g	12	-0.19214	$2 A_s$	5	-0.19538 3 7	24	21
-0.18375 1	A_u	3	-0.18582	1	F_u	12	-0.18831	0	H_g	5	-0.19181	$1 = F_g$	12	-0.19481 1	F_{S}	12
-0.18343 0	F_{π}	4	-0.18578	1	A_{π}	3	-0.18822	0	H_n	5	-0.19145	T_{2u}	9	-0.19472 0	F_{S}	4
-0.18305 0	T_{2u}	3	-0.18571	0	F_u	-4	-0.18814	1	T_{2u}	9	-0.19139 2	$2 H_u$	25	-0.19452 1 7	2u	9
-0.18294 1	F_g	12	-0.18541	1	F_{g}	12	-0.18785	0	F_{π}	4	-0.19135	H_g	5	-0.19442 0 2	A_g	1
J = 1.6			J = 1.7			J = 1.8			J = 2			$J \rightarrow c$	<u>xo</u>			
-0.20073 2	H_g	25	-0.20558	4	A_g	9	-0.21106	4	A_g	9	-0.22074	A_g	9	-0.33288 4	A_g	9
-0.20062 3	T_{2u}	21	-0.20540	3	T_{2u}	21	-0.20977	3	T_{2u}	21	-0.21749 3	$3 T_{2u}$	21	-0.31975 3 7	1u	21
-0.20045 2	A_g	5	-0.20433	2	H_g	25	-0.20819	3	F_g	28	-0.21599	$3 F_g$	28	-0.30980 3 1	I_S	35
-0.20003 1	T_{1u}	9	-0.20407	2	A_g	5	-0.20764	2	H_g	25	-0.21371 3	$3 T_{1u}$	21	-0.30756 3 7	2u	21
-0.19973 1	T_{2g}	9	-0.20377	3	F_g	28	-0.20738	2	A_g	5	-0.21350	H_g	25	-0.30708 2 1	I_S	25
-0.19970 2	Hu	25	-0.20333	2	Hu	25	-0.20666	2	H _n	25	-0.21325 2	A_g	5	-0.30681 3	18	28
-0.19958 4	A_g	9	-0.20253	1	T_{1u}	9	-0.20485	1	T_{1u}	9	-0.21255	H _u	25	-0.30656 5 1	4.9	11
-0.19900 0	Au	1	-0.20222	1	T_{2g}	9	-0.20462	3	T_{1u}	21	-0.21098 2	H_g	25	-0.30604 3 1	P	28
-0.19895 3	F_{g}	28	-0.20107	2	F_g	20	-0.20451	1	T_{2g}	9	-0.21045	F_g	20	-0.30356 2 2	19	5
-0.19843 1	$F_{\mathcal{R}}$	12	-0.20099	1	P _u	12	-0.20445	2	P _g	20	-0.20994	Fu Fu	20	-0.29817 4 7	14	27
-0.19756 1	Fg.	12	-0.20051	0	A _k	1 20	-0.20379	2	E E	25	-0.20951 3	H_g	35	-0.29802 2 7	2u	15
-0.1010012	- 10 au	- 2017	-0.20032	-41	J. 11	- 20	-0.20370	- 44 L	1 N 10	- 2017	-0.20020 i	21 E.u.	- 40	-st_2012012 1	ALC: N	2018

J=0.9, 1, 1.1, and 1.2: singlets inside the singlet-triplet gap.

Ground-state magnetization discontinuities in a field

Higher J: weaker frustration, equidistant jumps

Ground-state magnetization discontinuities in a field

Black circles: $\Delta S^z = 1$ Red squares: $\Delta S^z = 2$ Green diamonds: $\Delta S^z = 3$

Ground-state magnetization discontinuities in a field

J-range	S^z_{below}	S^z_{above}	Irrep. below	Irrep. above
$0 \leq J \leq 1.012$	10	12	A_g	A_u
$0.279 < J \le 0.302$	1	3	T_{2g}	F_{g}
0.302 < J < 0.307	0	3	A_u	F_{g}
$0.307 \leq J \leq 0.371$	0	2	A_u	A_g
0.642 < J < 0.743	0	2	A_u	A_g
$0.707 < J \le 1.032$	4	6	A_g	A_u
$0.980 \leq J \leq 1.071$	6	8	A_u	A_g
$1.050 \leq J \leq 1.056$	4	6	A_g	A_u
$1.074 < J \le 1.075$	6	8	A_g	A_g

Three discontinuities

 \rightarrow 0.707 < J < 0.743

 \rightarrow 0.980 \leq J \leq 1.012

Can have degenerate irreducible representations on either side of a jump

CONCLUSIONS

- → Antiferromagnetic Heisenberg model on the pentakis dodecahedron.
- \rightarrow Frustration results in nontrivial magnetic properties
 - \rightarrow classical magnetization and susceptibility discontinuities.
 - → quantum magnetization discontinuities (I_h symmetry) as big as $\Delta S^z = 3$.
 - \rightarrow singlets inside the singlet-triplet gap.