Development of a Low Variance Entropy Estimator and its Application to Quantify the Covid-19 Financial Markets Shock Response.

We improved information entropy estimation variance and consistency for (quasi-) continuous distributions with an adapted density discretization. With it, we detect strong correlation of higher inter-stock information transfer with economic **policy uncertainty**, especially on the onset of COVID-19.

Introduction

Important measures for non-linear data analysis such as transfer entropy or mutual information depend on information entropy.

Binning Techniques

K-Means

Clustering

10. Doanes Bins

- Agglomerative Hierarchical
- 11. Agostinos Uniform Probability
- 12. Sturges Bins
 - 13. Shimazakis Bins

• The Shannon Information Entropy is defined for discrete random variables:

$H(X) = -\sum_{i=1}^{n} P(x_i) \log P(x_i)$

- It can be thought of as an average surprise of the values $x_i \in X$.
- Generalisations for continuous data exist but suffer from problems. The entropy might be negative or contain diverging terms. Additionally, it depends on the often unknown underlying PDF.
- Hence, discrete information entropy is commonly used for entropy estimation on discretized continuous data.
- **Question**: How does discretization influence entropy value?

Methods

- Monte Carlo Analysis of samples of different length from 9 differently shaped distributions with added white noise.
- **Problem**: We cannot benchmark against a true H(x) since it does not exist for continuous distributions. Thus, aim to minimize $\sigma(H(x))$.

Results

- We identify a strong dependence of the final entropy values of discretized continuous data on binning hyper-parameters.
- The adapted estimator improves variance and

Adapted Estimator

- Motivation: Probability mass should depend on bin data counts and bin size.
- With v_i , v the bin volume and total volume, n_i , n the bin and total count, m the number of bins and D the dimension:

$$\hat{f}_n(x) = \frac{1}{C} \sum_{j=1}^m \frac{n_j}{n} \sqrt[D]{\frac{v_j}{v}} I_{x \in B_j}$$
$$\rightarrow p_j = \frac{1}{C} \frac{n_j}{n} \sqrt[D]{\frac{v_j}{v}}$$

Normalise the entropy by number of bins:

$$\tilde{H}(x) = -\frac{1}{\log m} \sum_{j=1}^{m} p_j \log(p_j)$$

14. Akaike Information Criterion Minimizing Cross Validation Expectation Maximisation with 15. Small Sample Akaike Gaussian Mixture Model Information Criterion Freedman-Diaconis Rule 16. Bayesian Information Criterion 17. Maximising Cross-Validation Scotts Rule Likelihood Square Root N Bins Rice Rule 18. Mean Shift Knuths Method 19. DBSCAN

binning • We methods the tested and estimators differently shaped against distributions.

Properties of Estimator

- consistency for most binning methods.
- There is still residual dependence so the binning method has to be chosen carefully.

Entropy Values with Common Estimator				$rac{\sigma(H(x))}{\mu(H(x))} - rac{\sigma(ilde{H}(x))}{\mu(ilde{H}(x))}$										
4 - 1 photophylic	<u>Ĥ(x))</u> Performance	1 - 2 - 3 - 4 - 5 - 6 - 7 -	0.018 0.019 0.035 0.011 0.095 -0.0011 0.018 0.017	0.0054 0.0035 0.025 0.0034 0.12 0.012 0.0069 0.0061	0.0035 0.0017 0.016 0.0082 0.092 0.07 0.0052 0.003	0.015 0.013 0.025 0.014 0.081 0.048 0.017 0.016	0.043 0.047 0.097 0.059 0.014 -0.0028 0.1 0.095	0.033 0.032 0.092 0.027 0.0074 -0.011 0.095 0.084	0.028 0.031 0.085 0.031 -0.0041 -0.028 0.11 0.098	0.03 0.026 0.056 0.029 0.011 -0.014 0.064 0.06	0.028 0.023 0.077 0.04 -0.0031 -0.021 0.081 0.075			
Entropy Values with Adapted Estimator		≖ 9- 10-	0.36 0.052	0.22 0.039	0.085 0.039	0.17 0.013	0.18 0.073	0.16 0.095	0.14 0.078	0.21 0.053	0.22 0.079			
1.0 0.8 0.6 0.4 0.2 1.0 0.4 0.2 1.0 0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Methods by Decreas	11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 -	-0.0075 0.012 0.037 0.47 -0.00045 -0.00045 0.13 0.16	-0.0035 0.0052 1.3 0.3 0.3 -0.00062 -0.00062 0.17 0.54	-0.0029 0.0019 1.3 0.13 0.13 0.078 -0.00067 0.16 1.3	-0.01 0.013 0.25 0.25 0.19 -0.009 -0.08 1.2	-0.074 0.079 0.093 0.21 0.21 0.16 -0.03 -0.018 0.76	-0.051 0.066 0.091 0.034 0.034 0.016 -0.05 0.018 0.71	-0.075 0.083 0.089 0.34 0.34 0.31 -0.055 -0.013 0.97	-0.041 0.05 0.056 0.28 0.28 0.34 -0.024 0.041 0.69	-0.053 0.062 0.076 0.26 0.23 -0.11 0.039 0.79			
Beta R Uniform Argus Exponential Laplace Gumbel Normal Logistic	2		Beta	Ŕ	Uniform	Argus	Exponential	Laplace	Gumbel	Normal	Logistic			

- More consistent results between binning methods for the adapted estimator
- Smaller variance of most binning methods with the adapted estimator

Application in Stock Network

- Daily adjusted close prices of the 100 Use S&P500 constituents with the highest market capitalisation starting 2018.
- Calculate directed network with transfer entropy as edges utilizing our adapted
- Economic the 0.14 Policy Uncertainty Index 0.12 -(EPU) by Baker et al. to 0.10quantify uncertainty. · 80.0 ڀَـٰ. EPU indexes economic

L an upper bound to the PDF and derivative • of the PDF, M the size of the biggest bin, D the dimension, v the total volume of nonempty bins, C a normalisation constant and x* a value in the bin range:

$$\operatorname{var}\left(\hat{f}_{n}\left(x\right)\right) \leq \left(\frac{M}{v}\right)^{\frac{2}{D}} \frac{LM}{Cn}.$$

$$\operatorname{bias}\left(\hat{f}_{n}\left(x\right)\right) \leq LM + L\left(\sqrt[D]{\frac{M^{D+1}}{C^{D}v}} - 1\right)$$

$$\mathbb{E}\left(\hat{f}_{n}\left(\vec{x}\right)\right) = \frac{\sqrt[D]{v_{j}^{D+1}}}{Cv} f\left(\vec{x}^{*}\right)$$

Discussion

- 0.3

- 0.2

- 0.1

- 0.0

- Binning has a strong influence on dependent measures.
- Variance reduction with adaptation of • measures is possible.
- However, the binning still residual influence on the final entropy value and should be chosen consciously and carefully.
- **Application**: Information transfer between stocks correlates highly with economic policy uncertainty.

entropy estimator. $TE_{x \to y} = H(Y_t, Y_{t-1}) + H(X_{t-1}, Y_{t-1})$

- $-H(Y_t, Y_{t-1}, X_{t-1}) H(Y_{t-1})$
- Obtain time evolution by slicing into 50 day windows.
- Calculate link density of slices:

$$L = \frac{\sum_{i \neq j} TE_{i \to j}}{n^2}$$

uncertainty by tracking the number of related articles in newspapers and the heterogeneity of opinions therein.

• We find strong correlation between inter-stock information transfer and EPU. Both EPU and information transfer are especially high during the COVID-19 onset in march 2020.

References

- 1. C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):379-423, 1948.
- T. Schreiber. Measuring information transfer. *Physical review* letters, 85(2), 461-465. 2000.
- Albert Réka, and Albert-László Barabási. Statistical mechanics of complex networks. *Reviews of modern physics*, 74(1): 47-101. 2002.
- 4. Scott R. Baker, Nicholas Bloom, and Steven J. Davis. Measuring economic policy uncertainty. The quarterly journal of economics, 131(4): 1593-1636. 2016.
- Other references see: M. Mynter. Master's Thesis, due 13th Sept. 2021. 5.

M. Mynter¹, H. Ma^{1,2}, A. Haluszczynski^{1,2}, C. Räth^{1,3}

¹Ludwig-Maximilians-Universität, Department of Physics, Schellingstraße 4, 80799 München ² Allianz Global Investors, Seidlstraße 24-24a, 80335 München ³ DLR, Institut für Materialphysik im Weltraum, Münchener Str. 20, 82234 Weßling

