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Abstract
Reinforcement Learning presents a promising way to control active particles
[1]. In this work we study the impact of stochasticity on a learning process.
We use Q-learning with table Q-function to find the fastest path to a target.

Environments are 1D and 2D gridworlds having regions with different noise
intensity T . The noise is modelled as T random actions, performed after every
agent’s action.
Stable bias is observed in our systems. On realistic timescales, the bias leads

to selection of suboptimal strategies, increasing presence of agents in regions
with high noise.
We assume that stochastic dynamic allows a poorly trained agent to reach a

target earlier. Consequently, first-passage properties of media affect learned
strategy.
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Effect of learning rate
The update rule of Q-learning is governed by learning rate α, exploration-
exploitation parameter ε and discount rate γ [3]

Q(st, at) := Q(st, at) + α
(
Rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

)
The value Q(st, at) is renewed in a cycle [2]

Qn+1 = Qn + α
(
Rn −Qn

)
= (1− α)nQ1 + α

n∑
i=1

(1− α)n−iRi

The higher α, the sooner an agent overwrites its previous experience. We ex-
pect that in stochastic dynamics there could be restriction on α, under which
convergence to certain policies is possible.

2D simulation
An agent has 4 actions and moves on 10x10 grid, rstep = -1 and rtarget = 100.
Step penalty is not applied to additional random moves.
Noise level T of the red region can be varied. High learning rates prevent the

algorithm from exploring this random area at T > 0, Figure 1. Low α results
in opposite behaviour.
Presence of noise worsens the mean first passage time: 9.7% for T = 3. Learn-

ing time improves results slowly: 30k episodes give MFPT = 25.0 and 94%
agents in random area, 300k – 19.5 and 80% respectively (T = 3, α = 0.1).
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Figure 1: Q-learning, 500 agents, ε = 0.1, γ = 0.9, learning time = 300k episodes,
performance was measured for greedy behaviour (ε = 0.0)

1D simulation
An agent starts in the center x0 of the interval, consisting of 41 states, rstep =
-1 and rtarget = 0. Right-hand side x > x0 has the noise level T .
It will be convenient to introduce some notation for policies, Figure 2a.
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Figure 2: (a) 1D environment and policies notation, (b) MC: 106 runs, Q-learning: 104 agents,
α = 0.1, ε = 0.1, γ = 0.9, learning time = 50k episodes

Policies of interest were evaluated by 106 Monte Carlo runs. The best found
policy π? depends on temperature T , πQ represents the most common policy
of 104 Q-learning agents (π0 means that πL and πR have the same value)

π? =


π0, for T ∈ [0, 2]

πR, for T ∈ [3, 9]

πRR, for T = 10

πQ =


π0, for T = 0

πR, for T = 1, 2

πRR, for T ∈ [3, 8]

πRRR, for T = 9, 10

Nearly 100% of agents turn right one cell before it yields lower cost, Table 1.
Evaluation of πQ shows that it differs from π? by 1.5%, Figure 2b.
In the second part of the simulation we have employed a drift. Its purpose is

to gradually make πR policy less profitable. The drift occurs only in the last
quarter of the interval and is defined by a probability to make a left move.

START
x

END ENDdrift

Table 2 shows that 2/3 of agents follow πR despite 7.5% worse score, 1/4 of
them follow πR when it is 12% worse than πL (for T=3).

R actions,%
T the most common, πQ x0 x0 − 1 x0 − 2

0 π0 50 0 0
1 πR 99 0 0
2 πR 97 0 0
3 πRR 100 75 0
4 πRR 100 91 0
5 πRR 100 96 1
6 πRR 100 100 1
7 πRR 100 100 50
8 πRR 100 100 41
9 πRRR 100 100 95
10 πRRR 100 100 80

Table 1: The most common policy derived
from Q-learning values, 104 agents, α =
0.1, ε = 0.1, γ = 0.9, learning time = 50k
episodes

T drift
πR − πL
πL

, % R actions in x0, %

1 0.10 4.3 75
0.15 6.7 31
0.20 9.5 10

2 0.10 3.7 67
0.15 5.9 36
0.20 8.3 16

3 0.10 0.5 99
0.15 2.2 96
0.20 3.7 94
0.25 5.9 86
0.30 7.5 68
0.35 9.2 42
0.40 12.0 25

Table 2: Q-learning: 104 agents, α = 0.1,
ε = 0.1, γ = 0.9, learning time = 50k
episodes, MC: 104 runs.

Conclusions
• High learning rate prevents the algorithm from exploring stochastic media.
• For small enough α agents tend to go through noisy regions.
• Loss in performance can reach 7-10% for majority of agents and is more
evident for higher dimensions (state-action set size).

• The performance of Q-learning is the highest among all tested algorithms
(Double Q-learning, Expected SARSA and SARSA)

• Apparently, first-passage properties of media affect the policy selection.
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